Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In regards to treatment of hypochondroplasia usually takes the form of orthopedic surgery and physical therapy. Genetic counseling is advised for individuals and their families. Specifically in the case of spinal stenosis, one option is laminectomy.
There is no known cure. In selected patients orthopaedic surgery may be helpful to try to gain some functionality of severely impaired joints.
Life expectancy for individuals with hypochondroplasia is normal; the maximum height is about 147 cm or 4.8 ft.
There is no known cure for Ehlers–Danlos syndrome. Treatment is palliative. Close monitoring of the cardiovascular system, physiotherapy, occupational therapy, and orthopedic instruments (e.g., wheelchairs, bracing, casting) may be helpful. This can help with stabilizing the joints and prevent injury. Orthopedic instruments are helpful for the prevention of further joint damage, especially for long distances, although it is advised that individuals not become entirely dependent on them until there are no other options for mobility. One should avoid activities that cause the joint to lock or overextend.
A physician may prescribe casting to stabilize joints. Physicians may refer a patient to an orthotist for orthotic treatment (bracing). Physicians may also consult a physical and/or occupational therapist to help strengthen muscles and to teach people how to properly use and preserve their joints.
There are different types of physiotherapy. Aquatic therapy promotes muscular development and coordination. With manual therapy, the joint will be gently mobilized within the range of motion and/or manipulations.
If conservative therapy is not helpful, surgical repair of joints may be necessary. Medication to decrease pain or manage cardiac, digestive, or other related conditions may be prescribed. To decrease bruising and improve wound healing, some patients have responded to ascorbic acid (vitamin C). Special precautions are often taken by medical care workers because of the sheer amount of complications that tend to arise in EDS patients. In Vascular EDS, signs of chest or abdominal pain are to be considered trauma situations.
In general, medical intervention is limited to symptomatic therapy. Before pregnancy, patients with EDS should have genetic counseling and familiarize themselves with the risks to their own bodies that pregnancy poses. Children with EDS should be provided with information about the disorder so they can understand why contact sports and other physically stressful activities should be avoided. Children should be taught early on that demonstrating the unusual positions they can maintain due to loose joints should not be done as this may cause early degeneration of the joints. Patients may find it hard to cope with the drawbacks of the disease. In this case, emotional support and behavioral and psychological therapy can be useful. Support groups can be immensely helpful for patients dealing with major lifestyle changes and poor health. Family members, teachers, and friends should be informed about EDS so they can accept and assist the child.
Similar to all genetic diseases Aarskog–Scott syndrome cannot be cured, although numerous treatments exist to increase the quality of life.
Surgery may be required to correct some of the anomalies, and orthodontic treatment may be used to correct some of the facial abnormalities. Trials of growth hormone have been effective to treat short stature in this disorder.
Treatment of 3-M syndrome is aimed at the specific symptoms presented in each individual. With the various symptoms of this disorder being properly managed and affected individuals having normal mental development, 3-M syndrome is not a life - threatening condition and individuals are able to lead a near normal life with normal life expectancy.
Treatment may involve the coordinated efforts of many healthcare professionals, such as pediatricians, orthopedists, dentists and/or other specialists depending on the symptoms.
- Possible management options for short stature are surgical bone lengthening or growth hormone therapy.
- Orthopedic techniques and surgery may be used to treat certain skeletal abnormalities.
- Plastic surgery may also be performed on individuals to help correct certain cranio-facial anomalies.
- Individuals with dental abnormalities may undergo corrective procedures such as braces or oral surgeries.
Genetic mutations of most forms of dwarfism caused by bone dysplasia cannot be altered yet, so therapeutic interventions are typically aimed at preventing or reducing pain or physical disability, increasing adult height, or mitigating psychosocial stresses and enhancing social adaptation.
Forms of dwarfism associated with the endocrine system may be treated using hormonal therapy. If the cause is prepubescent hyposecretion of growth hormone, supplemental growth hormone may correct the abnormality. If the receptor for growth hormone is itself affected, the condition may prove harder to treat. Hypothyroidism is another possible cause of dwarfism that can be treated through hormonal therapy. Injections of thyroid hormone can mitigate the effects of the condition, but lack of proportion may be permanent.
Pain and disability may be ameliorated by physical therapy, braces or other orthotic devices, or by surgical procedures. The only simple interventions that increase perceived adult height are dress enhancements, such as shoe lifts or hairstyle. Growth hormone is rarely used for shortness caused by bone dysplasias, since the height benefit is typically small (less than ) and the cost high. The most effective means of increasing adult height by several inches is distraction osteogenesis, though availability is limited and the cost is high in terms of money, discomfort, and disruption of life. Most people with dwarfism do not choose this option, and it remains controversial. For other types of dwarfism, surgical treatment is not possible.
The cost of treatment depends on the amount of growth hormone given, which in turn depends on the child's weight and age. One year's worth of drugs normally costs about US $20,000 for a small child and over $50,000 for a teenager. These drugs are normally taken for five or more years.
While there is no specific treatment for the underlying genetic cause of LFS; corrective procedures, preventive intervention measures and therapies may be considered in the treatment and management of the many craniofacial, orthopedic and psychiatric problems associated with the disorder. More pressing issues such as cardiac involvement or epileptic seizures should be routinely examined and monitored. Close attention and specialized follow-up care, including neuropshycological evaluation methods and therapies, and special education, should be given to diagnose and prevent psychiatric disorders and related behavioral problems such as psychosis and outbursts of aggression.
To treat the trigonocephaly, expanding the distance between orbits using springs seems to work. It allows enough space for the brain to grow and it creates a normal horizontal axis of the orbits and supraorbital bar. The endoscopic surgery started to become popular since the early 90's, but it has some technical limitations (only strip cranictomy is possible). There have been few attempts to go beyond the limits.
Aesthetic outcomes of metopic surgery have been good. Surgery does not have a perfect outcome because there will most likely be minor irregularities. Sometimes reoperations are needed for the severe cases. Trying to hollow out the temporal, and the hypoterlorism are very hard to correct. The hypotelorism usually stays not corrected and in order to correct the temporal hollowing, a second operation is most likely needed.
There is no treatment at this time to promote bone growth in chondrodystrophy patients. Certain types of growth hormone seem to increase the rate of growth during the first year of life/treatment, but have no substantial effect in adult patients. Only a few surgical centers in the world perform, experimentally, leg and arm lengthening procedures. Most common therapies are found in seeking help from: family physicians, pediatrics, internists, endocrinologists, geneticists, orthopedists and neurologists.
Some people may have some mental slowness, but children with this condition often have good social skills. Some males may have problems with fertility.
The instability of joints, leading to (sub)luxations and joint pain, often require surgical intervention in patients with Ehlers–Danlos syndrome. Instability of almost all joints can happen but appear most often in the lower and upper extremities, with the wrist, fingers, shoulder, knee, hip, and ankle being most common.
Common surgical procedures are joint debridement, tendon replacements, capsulorraphy, and arthroplasty. Studies have shown that after surgery, degree of stabilization, pain reduction, and patient satisfaction can improve, but surgery does not guarantee an optimal result: Patients and surgeons report being dissatisfied with the results. Consensus is that conservative treatment is more effective than surgery, particularly since patients have extra risks of surgical complications due to the disease. Three basic surgical problems arise due to EDS: the strength of the tissues is decreased, which makes the tissue less suitable for surgery; the fragility of the blood vessels can cause problems during surgery; and wound healing is often delayed or incomplete. If considering surgical intervention, it would be prudent to seek care from a surgeon with extensive knowledge and experience in treating patients with EDS and joint hypermobility issues.
Studies have shown that local anesthetics, arterial catheters and central venous catheters cause a higher risk in haematoma formation in patients with Ehlers–Danlos syndrome. Ehlers–Danlos syndrome patients also show a resistance to local anaesthetics. Resistance to Xylocaine and Bupivacaine is not uncommon, and Carbocaine tends to work better in EDS patents. Special recommendations for anesthesia in EDS patients are prepared by orphananesthesia and deal with all aspects of anesthesia for people with EDS. Detailed recommendations for anesthesia and perioperative care of patients with EDS should be used to improve patient safety.
Surgery with Ehlers–Danlos patients requires careful tissue handling and a longer immobilization afterward.
The physical abnormalities resulting from SCS are typically mild and only require a minor surgical procedure or no procedure at all. One of the common symptoms of SCS is the development of short (brachydactyly), webbed fingers and broad toes (syndactyly). These characteristics do not cause any problems to the function of the hands or feet, and thus, no medical procedure is required to fix the abnormalities, unless the patient requests it. Webbing of the fingers may affect the base of the fingers, resulting in delayed hand growth during childhood, but this contributes no functional impairments. Sometimes, individuals with SCS develop broad toes because the bones at the ends of the toes are duplicating themselves. This is especially seen in the big toe, but requires no surgical intervention because it doesn't negatively affect the overall function of the foot. Individuals with these toe abnormalities walk normally and can wear normal footwear.
In more severe cases, frequent surgeries and clinical monitoring are required throughout development. A child born with asymmetrical unilateral coronal synostosis should undergo cranioplasty within its first year of life in order to prevent increased intracranial pressure and to prevent progressive facial asymmetry. Cranioplasty is a surgical procedure to correct prematurely fused cranial bones. The surgery acts to reconstruct and reposition the bones and sutures in order to promote the most normal growth. Cranioplasty is necessary in order to continue to grow and is important for two main reasons. First of all, the skull needs to be able to accommodate the growing brain following childbirth, which it can't because the skull doesn't grow as fast as the brain as long as the sutures remain fused. This results in an increase in pressure surrounding the brain and inhibits the brain from growing, causing the individual to experience significant problems, and if left untreated can eventually lead to death. Secondly, cranioplasty may be required for appearance purposes. This is especially the case in individuals with asymmetrical unilateral coronal synostosis, which requires reconstructive surgery of the face and skull. If cranioplasty is not performed, especially in individuals with unilateral coronal synostosis, then facial asymmetry will get worse and worse over time, which is why cranioplasty should be performed as soon as possible.
Surgery may also be required in individuals with vision problems. Vision problems usually arise due to a lack of space in the eye orbit and skull because of the abnormal bone structure of the face. Decreased space may also lead to abnormal or missing tear ducts and nerve damage. Reconstructive surgery is usually required in order to increase cranial space, correct tear duct stenosis, and/or correct ptosis of the eyelids in order to prevent amblyopia (lazy eye).
Midfacial surgery may also be required during early childhood to correct respiratory problems, dental malocclusion, and swallowing difficulties. A cleft palate is also corrected with surgery, and may involve the use of tympanostomy tubes. If needed, an individual will undergo orthognathic treatment and/or orthodontic treatment after facial development is complete. Since hearing loss is frequently associated with SCS, it is recommended that audiology screening persist throughout childhood.
After cranial reconstructive surgery, a child may be required to wear a molding helmet or some other form of head protection until the cranial bones set into place. This typically takes about three months and depends on the child's age and the severity of the condition. Following recovery, individuals with SCS look and act completely normal, so no one would even be able to tell that they have SCS.
Treatment can involve operations to lengthen the leg bones, which involves many visits to the hospital. Other symptoms can be treated with medicine or surgery. Most female patients with the syndrome can live a long and normal life, while males have only survived in rare cases.
People with Pyle disease are often asymptomatic. Dental anomalies may require orthodontic interventions. Skeletal anomalies may require orthopedic surgery.
There is no known cure for Winchester syndrome; however, there are many therapies that can aid in the treatment of symptoms. Such treatments can include medications: anti-inflammatories, muscle relaxants, and antibiotics. Many individuals will require physical therapy to promote movement and use of the limbs affected by the syndrome. Genetic counseling is typically prescribed for families to help aid in the understanding of the disease. There are a few clinical trials available to participate in. The prognosis for patients diagnosed with Winchester syndrome is positive. It has been reported that several affected individuals have lived to middle age; however,the disease is progressive and mobility will become limited towards the end of life. Eventually, the contractures will remain even with medical intervention, such as surgery.
There is currently no cure for pseudoachondroplasia. However, management of the various health problems that result from the disorder includes medications such as analgesics (painkillers) for joint discomfort, osteotomy for lower limb deformities, and the surgical treatment of scoliosis. Prevention of some related health problems includes physical therapy to preserve joint flexibility and regular examinations to detect degenerative joint disease and neurological manifestations (particularly spinal cord compression). Additionally, healthcare providers recommend treatment for psychosocial issues related to short stature and other physical deformities for both affected individuals and their families (OMIM 2008).
The decision to treat is based on a belief that the child will be disabled by being extremely short as an adult, so that the risks of treatment (including sudden death) will outweigh the risks of not treating the symptom of short stature. Although short children commonly report being teased about their height, most adults who are very short are not physically or psychologically disabled by their height. However, there is some evidence to suggest that there is an inverse linear relationship with height and with risk of suicide.
Treatment is expensive and requires many years of injections with human growth hormones. The result depends on the cause, but is typically an increase in final height of about taller than predicted. Thus, treatment takes a child who is expected to be much shorter than a typical adult and produces an adult who is still obviously shorter than average. For example, several years of successful treatment in a girl who is predicted to be as an adult may result in her being instead.
Increasing final height in children with short stature may be beneficial and could enhance health-related quality of life outcomes, barring troublesome side effects and excessive cost of treatments.
Treatments focuses on symptoms, with genetic counseling recommended.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.
Many types of dwarfism are currently impossible to prevent because they are genetically caused. Genetic conditions that cause dwarfism may be identified with genetic testing, by screening for the specific variations that result in the condition. However, due to the number of causes of dwarfism, it may be impossible to determine definitively if a child will be born with dwarfism.
Dwarfism resulting from malnutrition or a hormonal abnormality may be treated with an appropriate diet or hormonal therapy. Growth hormone deficiency may be remedied via injections of human growth hormone (HGH) during early life.
It is important that the individual experience independence and self-worth. There are several appliances available to help overcome the disadvantages of small stature, including light-switch extenders and longer pedals in cars to enable effective driving. Several organizations that help Little People interact and get involved, such as the Little People of America.
Treatments exist for the various symptoms associated with XXXY syndrome. Testosterone therapy, which is giving affected individuals doses of testosterone on a regular basis, has been shown to reduce aggressive behavior in these patients. But, this therapy has also been associated with negative side effects: worsening of behavior, and osteoporosis. Not all individuals are applicable for testosterone therapy, as the best results are often achieved when dosage begins at the initiation of puberty, and these individuals are often diagnosed at a later age, or not at all. Testosterone therapy has been shown to have no positive effect on fertility.
Consideration of the psychological phenotype of individuals with XXXY should be taken into account when treating these patients, because these traits affect compliance with treatments. When caught early, Taurodontism can be treated with a root canal and is often successful. Appropriate planning to avoid Taurodontism is possible, but this syndrome must be diagnosed early, which is not common. Taurodontism can often be detected as a symptom of XXXY syndrome before other characteristics develop, and can be an early indicator for it. Surgical treatments to correct joint problems, such as hip dysplasia are common, and are often successful alongside physiotherapy.
Those with XXXY syndrome can also attend speech therapy. This form of therapy helps patients to understand and produce more complex language. Those with XXXY syndrome tend to experience more severe speech delays, so this form of treatment can be very beneficial to them, and can help them to communicate better with other people.
Since hypotonia is common in those with this syndrome, physical therapy can also be helpful. This form of therapy may help these individuals develop muscle tone, and increase balance and coordination.
Stratton parker syndrome is a rare disorder characterized by short stature, wormian bones (extra cranial bones), and dextrocardia (displaced heart). Other symptoms include dermatoglyphics, tooth deformities or missing teeth, abnormal kidney development, shortened limbs, mental retardation, undescended testes or cryptorchidism, and anal atresia. The condition was first described by Stratton and Parker in 1989, and there have been only four reported cases worldwide. Two cases of the syndrome were reported by Gilles-Eric Seralini in 2010 after having been contacted in January 2009.
Alternative names include "Growth Hormone Deficiency with Wormian Bones, Cardiac Anomaly, and Brachycamptodactyly" and "Short stature wormian bones dextrocardia"