Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The primary treatment method for fatty-acid metabolism disorders is dietary modification. It is essential that the blood-glucose levels remain at adequate levels to prevent the body from moving fat to the liver for energy. This involves snacking on low-fat, high-carbohydrate nutrients every 2–6 hours. However, some adults and children can sleep for 8–10 hours through the night without snacking.
Carnitor - an L-carnitine supplement that has shown to improve the body's metabolism in individuals with low L-carnitine levels. It is only useful for Specific fatty-acid metabolism disease.
A diet with carefully controlled levels of the amino acids leucine, isoleucine, and valine must be maintained at all times in order to prevent neurological damage. Since these three amino acids occur in all natural protein, and most natural foods contain some protein, any food intake must be closely monitored, and day-to-day protein intake calculated on a cumulative basis, to ensure individual tolerance levels are not exceeded at any time. As the MSUD diet is so protein-restricted, and adequate protein is a requirement for all humans, tailored metabolic formula containing all the other essential amino acids, as well as any vitamins, minerals, omega-3 fatty acids and trace elements (which may be lacking due to the limited range of permissible foods), are an essential aspect of MSUD management. These complement the MSUD patient's natural food intake to meet normal nutritional requirements without causing harm. If adequate calories cannot be obtained from natural food without exceeding protein tolerance, specialised low protein products such as starch-based baking mixtures, imitation rice and pasta may be prescribed, often alongside a protein-free carbohydrate powder added to food and/or drink, and increased at times of metabolic stress. Some patients with MSUD may also improve with administration of high doses of thiamine, a cofactor of the enzyme that causes the condition.
No specific cure has been discovered for homocystinuria; however, many people are treated using high doses of vitamin B (also known as pyridoxine). Slightly less than 50% respond to this treatment and need to take supplemental vitamin B for the rest of their lives. Those who do not respond require a Low-sulfur diet (especially monitoring methionine), and most will need treatment with trimethylglycine. A normal dose of folic acid supplement and occasionally adding cysteine to the diet can be helpful, as glutathione is synthesized from cysteine (so adding cysteine can be important to reduce oxidative stress).
Betaine (N,N,N-trimethylglycine) is used to reduce concentrations of homocysteine by promoting the conversion of homocysteine back to methionine, i.e., increasing flux through the re-methylation pathway independent of folate derivatives (which is mainly active in the liver and in the kidneys).The re-formed methionine is then gradually removed by incorporation into body protein. The methionine that is not converted into protein is converted to S-adenosyl-methionine which goes on to form homocysteine again. Betaine is, therefore, only effective if the quantity of methionine to be removed is small. Hence treatment includes both betaine and a diet low in methionine. In classical homocystinuria (CBS, or cystathione beta synthase deficiency), the plasma methionine level usually increases above the normal range of 30 micromoles/L and the concentrations should be monitored as potentially toxic levels (more than 400 micromoles/L) may be reached.
Low-protein food is recommended for this disorder, which requires food products low in particular types of amino acids (e.g., methionine).
In the middle of the 20th century the principal treatment for some of the amino acid disorders was restriction of dietary protein and all other care was simply management of complications. In the past twenty years, enzyme replacement, gene therapy, and organ transplantation have become available and beneficial for many previously untreatable disorders. Some of the more common or promising therapies are listed:
Supplementary "protein substitute" formulas are typically prescribed for people PKU (starting in infancy) to provide the amino acids and other necessary nutrients that would otherwise be lacking in a low-phenylalanine diet. Tyrosine, which is normally derived from phenylalanine and which is necessary for normal brain function, is usually supplemented. Consumption of the protein substitute formulas can actually reduce phenylalanine levels, probably because it stops the process of protein catabolism from releasing Phe stored in the muscles and other tissues into the blood. Many PKU patients have their highest Phe levels after a period of fasting (such as overnight), because fasting triggers catabolism. A diet that is low in phenylalanine but does not include protein substitutes may also fail to lower blood Phe levels, since a nutritionally insufficient diet may also trigger catabolism. For all these reasons, the prescription formula is an important part of the treatment for patients with classic PKU.
The oral administration of tetrahydrobiopterin (or BH4) (a cofactor for the oxidation of phenylalanine) can reduce blood levels of this amino acid in some people. Most people, however, have little or no benefit.
Tentative evidence supports dietary supplementation with large neutral amino acids (LNAAs). The LNAAs (e.g. leu, tyr, trp, met, his, ile, val, thr) may compete with phe for specific carrier proteins that transport LNAAs across the intestinal mucosa into the blood and across the blood–brain barrier into the brain. It use is really only indicated in adults who will not follow an appropriate diet.
Another interesting treatment strategy for is casein glycomacropeptide (CGMP), which is a milk peptide naturally free of Phe in its pure form CGMP can substitute the main part of the free amino acids in the PKU diet and provides several beneficial nutritional effects compared to free amino acids. The fact that CGMP is a peptide ensures that the absorption rate of its amino acids is prolonged compared to free amino acids and thereby results in improved protein retention and increased satiety compared to free amino acids. Another important benefit of CGMP is that the taste is significantly improved when CGMP substitutes part of the free amino acids and this may help ensure improved compliance to the PKU diet.
Furthermore, CGMP contains a high amount of the phe lowering LNAAs, which constitutes about 41 g per 100 g protein and will therefore help maintain plasma phe levels in the target range.
Treatment for all forms of this condition primarily relies on a low-protein diet, and depending on what variant of the disorder the individual suffers from, various dietary supplements. All variants respond to the levo isomer of carnitine as the improper breakdown of the affected substances results in sufferers developing a carnitine deficiency. The carnitine also assists in the removal of acyl-CoA, buildup of which is common in low-protein diets by converting it into acyl-carnitine which can be excreted in urine. Though not all forms of methylmalonyl acidemia are responsive to cobalamin, cyanocobalamin supplements are often used in first line treatment for this disorder. If the individual proves responsive to both cobalamin and carnitine supplements, then it may be possible for them to ingest substances that include small amounts of the problematic amino acids isoleucine, threonine, methionine, and valine without causing an attack.
Usually MSUD patients are monitored by a dietitian. Liver transplantation is another treatment option that can completely and permanently normalise metabolic function, enabling discontinuation of nutritional supplements and strict monitoring of biochemistry and caloric intake, relaxation of MSUD-related lifestyle precautions, and an unrestricted diet. This procedure is most successful when performed at a young age, and weaning from immunosuppressants may even be possible in the long run. However, the surgery is a major undertaking requiring extensive hospitalisation and rigorous adherence to a tapering regime of medications. Following transplant, the risk of periodic rejection will always exist, as will the need for some degree of lifelong monitoring in this respect. Despite normalising clinical presentation, liver transplantation is not considered a cure for MSUD. The patient will still carry two copies of the mutated BKAD gene in each of their own cells, which will consequently still be unable to produce the missing enzyme. They will also still pass one mutated copy of the gene on to each of their biological children. As a major surgery the transplant procedure itself also carries standard risks, although the odds of its success are greatly elevated when the only indication for it is an inborn error of metabolism. In absence of a liver transplant, the MSUD diet must be adhered to strictly and permanently. However, in both treatment scenarios, with proper management, those afflicted are able to live healthy, normal lives without suffering the severe neurological damage associated with the disease.
A more extreme treatment includes kidney or liver transplant from a donor without the condition. The foreign organs will produce a functional version of the defective enzymes and digest the methylmalonic acid, however all of the disadvantages of organ transplantation are of course applicable in this situation. There is evidence to suggest that the central nervous system may metabolize methylmalonic-CoA in a system isolated from the rest of the body. If this is the case, transplantation may not reverse the neurological effects of methylmalonic acid previous to the transplant or prevent further damage to the brain by continued build up.
Patients with propionic acidemia should be started as early as possible on a low protein diet. In addition to a protein mixture that is devoid of methionine, threonine, valine, and isoleucine, the patient should also receive -carnitine treatment and should be given antibiotics 10 days per month in order to remove the intestinal propiogenic flora. The patient should have diet protocols prepared for him with a “well day diet” with low protein content, a “half emergency diet” containing half of the protein requirements, and an “emergency diet” with no protein content. These patients are under the risk of severe hyperammonemia during infections that can lead to comatose states.
Liver transplant is gaining a role in the management of these patients, with small series showing improved quality of life.
A high-protein diet can overcome the deficient transport of neutral amino acids in most patients. Poor nutrition leads to more frequent and more severe attacks of the disease, which is otherwise asymptomatic. All patients who are symptomatic are advised to use physical and chemical protection from sunlight: avoid excessive exposure to sunlight, wear protective clothing, and use chemical sunscreens with a SPF of 15 or greater. Patients also should avoid other aggravating factors, such as photosensitizing drugs, as much as possible. In patients with niacin deficiency and symptomatic disease, daily supplementation with nicotinic acid or nicotinamide reduces both the number and severity of attacks. Neurologic and psychiatric treatment is needed in patients with severe central nervous system involvement.
Treatment consists of dietary protein restriction, particularly leucine. During acute episodes, glycine is sometimes given, which conjugates with isovalerate forming isovalerylglycine, or carnitine which has a similar effect.
Elevated 3-hydroxyisovaleric acid is a clinical biomarker of biotin deficiency. Without biotin, leucine and isoleucine cannot be metabolized normally and results in elevated synthesis of isovaleric acid and consequently 3-hydroxyisovaleric acid, isovalerylglycine, and other isovaleric acid metabolites as well. Elevated serum 3-hydroxyisovaleric acid concentrations can be caused by supplementation with 3-hydroxyisovaleric acid, genetic conditions, or dietary deficiency of biotin. Some patients with isovaleric acidemia may benefit from supplemental biotin. Biotin deficiency on its own can have severe physiological and cognitive consequences that closely resemble symptoms of organic acidemias.
Dietary control may help limit progression of the neurological damage.
Standard of care for treatment of CPT II deficiency commonly involves limitations on prolonged strenuous activity and the following dietary stipulations:
- The medium-chain fatty acid triheptanoin appears to be an effective therapy for adult-onset CPT II deficiency.
- Restriction of lipid intake
- Avoidance of fasting situations
- Dietary modifications including replacement of long-chain with medium-chain triglycerides supplemented with L-carnitine
The conversion of tryptophan to serotonin and other metabolites depends on vitamin B. If tryptophan catabolism has any impact on brain glutaric acid and other catabolite levels, vitamin B levels should be routinely assayed and normalized in the course of the treatment of GA1.
Treatment or management of organic acidemias vary; eg see methylmalonic acidemia, propionic acidemia, isovaleric acidemia, and maple syrup urine disease.
As of 1984 there were no effective treatments for all of the conditions, though treatment for some included a limited protein/high carbohydrate diet, intravenous fluids, amino acid substitution, vitamin supplementation, carnitine, induced anabolism, and in some cases, tube-feeding.
As of 1993 ketothiolase deficiency and other OAs were managed by trying to restore biochemical and physiologic homeostasis; common therapies included restricting diet to avoid the precursor amino acids and use of compounds to either dispose of toxic metabolites or increase enzyme activity.
Symptoms can be reduced through avoidance of leucine, an amino acid. Leucine is a component of most protein-rich foods; therefore, a low-protein diet is recommended. Some isolated cases of this disorder have responded to supplemental biotin; this is not altogether surprising, consider that other biotin-related genetic disorders (such as biotinidase deficiency and holocarboxylase synthetase deficiency) can be treated solely with biotin. Individuals with these multiple carboxylase disorders have the same problem with leucine catabolism as those with 3-methylcrotonyl-CoA carboxylase deficiency.
PKU is not curable. However, if PKU is diagnosed early enough, an affected newborn can grow up with normal brain development by managing and controlling phenylalanine ("Phe") levels through diet, or a combination of diet and medication.
Treatment of LPI consists of protein-restricted diet and supplementation with oral citrulline. Citrulline is a neutral amino acid that improves the function of the urea cycle and allows sufficient protein intake without hyperammonemia. Under proper dietary control and supplementation, the majority of the LPI patients are able to have a nearly normal life. However, severe complications including pulmonary alveolar proteinosis and renal insufficiency may develop even with proper treatment.
Fertility appears to be normal in women, but mothers with LPI have an increased risk for complications during pregnancy and delivery.
Other therapeutic interventions include:
- ethosuximide and other anticonvulsant drugs
- GHB receptor antagonist NCS-382
- GABA receptor modulators
- uridine
- acamprosate
- dopaminergic agents
- dextromethorphan
- glutamine
- antioxidants
- Lamotrigine
The GABA(B) receptor antagonist, SGS-742, is currently being tested as a potential therapeutic in an NIH phase II clinical trial (NCT02019667).
Because HFM is a rare disorder, there are no studies that define its optimal treatment. Correction of the systemic folate deficiency, with the normalization of folate blood levels, is easily achieved with high doses of oral folates or much smaller doses of parenteral folate. This will rapidly correct the anemia, immune deficiency and GI signs. The challenge is to achieve adequate treatment of the neurological component of HFM. It is essential that the folate dose is sufficiently high to achieve CSF folate levels as close as possible to the normal range for the age of the child. This requires close monitoring of the CSF folate level. The physiological folate is 5-methyltetrahydrofolate but the oral formulation available is insufficient for treatment of this disorder and a parenteral form is not available. The optimal folate at this time is 5-formyltetrahydrofolate which, after administration, is converted to 5-methyltetrahydrofolate. The racemic mixture of 5-formyltetrahydrofolate (leucovorin) is generally available; the active S-isomer, levoleucovorin, may be obtained as well. Parenteral administration is the optimal treatment if that is possible. Folic acid should not be used for the treatment of HFM. Folic acid is not a physiological folate. It binds tightly to, and may impede, FRα-mediated endocytosis which plays an important role in the transport of folates across the choroid plexus into the CSF (see above). For a further consideration of treatment see GeneReviews.
The first suspicion of SPCD in a patient with a non-specific presentation is an extremely low plasma carnitine level. When combined with an increased concentration of carnitine in urine, the suspicion of SPCD can often be confirmed by either molecular testing or functional studies assessing the uptake of carnitine in cultured fibroblasts.
Identification of patients presymptomatically via newborn screening has allowed early intervention and treatment. Treatment for SPCD involves high dose carnitine supplementation, which must be continued for life. Individuals who are identified and treated at birth have very good outcomes, including the prevention of cardiomyopathy. Mothers who are identified after a positive newborn screen but are otherwise asymptomatic are typically offered carnitine supplementation as well. The long-term outcomes for asymptomatic adults with SPCD is not known, but the discovery of mothers with undiagnosed cardiomyopathy and SPCD has raised the possibility that identification and treatment may prevent adult onset manifestations.
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
Treatment includes the use of iron chelating agents (such as desferrioxamine) to lower serum ferritin concentration, brain and liver iron stores, and to prevent progression of neurologic symptoms. This, combined with fresh-frozen human plasma (FFP) effectively in decreasing liver iron content. Repetitive use of FFP can even improve neurologic symptoms. Antioxidants such as vitamin E can be used simultaneously to prevent tissue damage to the liver and pancreas.