Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Perhaps the most difficult aspect of membranous glomerulonephritis is deciding which people to treat with immunosuppressive therapy as opposed to simple "background" or anti-proteinuric therapies. A large part of this difficulty is due to a lack of ability to predict which people will progress to end-stage renal disease, or renal disease severe enough to require dialysis. Because the above medications carry risk, treatment should not be initiated without careful consideration as to risk/benefit profile. Of note, corticosteroids (typically Prednisone) alone are of little benefit. They should be combined with one of the other 5 medications, each of which, along with prednisone, has shown some benefit in slowing down progression of membranous nephropathy. It must be kept in mind, however, that each of the 5 medications also carry their own risks, on top of prednisone.
The twin aims of treating membranous nephropathy are first to induce a remission of the nephrotic syndrome and second to prevent the development of endstage renal failure. A meta-analysis of four randomized controlled studies comparing treatments of membranous nephropathy showed that regimes comprising chlorambucil or cyclophosphamide, either alone or with steroids, were more effective than symptomatic treatment or treatment with steroids alone in inducing remission of the nephrotic syndrome.
Treatment of secondary membranous nephropathy is guided by the treatment of the original disease. For treatment of idiopathic membranous nephropathy, the treatment options include immunosuppressive drugs and non-specific anti-proteinuric measures. Recommended first line therapy often includes: cyclophosphamide alternating with a corticosteroid.
The ideal treatment for IgAN would remove IgA from the glomerulus and prevent further IgA deposition. This goal still remains a remote prospect. There are a few additional caveats that have to be considered while treating IgA nephropathy. IgA nephropathy has a very variable course, ranging from a benign recurrent hematuria up to a rapid progression to chronic kidney failure. Hence the decision on which patients to treat should be based on the prognostic factors and the risk of progression. Also, IgA nephropathy recurs in transplants despite the use of ciclosporin, azathioprine or mycophenolate mofetil and steroids in these patients. There are persisting uncertainties, due to the limited number of patients included in the few controlled randomized studies performed to date, which hardly produce statistically significant evidence regarding the heterogeneity of IgA nephropathy patients, the diversity of study treatment protocols, and the length of follow-up.
Patients with isolated hematuria, proteinuria < 1 g/day and normal renal function have a benign course and are generally just followed up annually. In cases where tonsillitis is the precipitating factor for episodic hematuria, tonsillectomy has been claimed to reduce the frequency of those episodes. However, it does not reduce the incidence of progressive kidney failure. Also, the natural history of the disease is such that episodes of frank hematuria reduce over time, independent of any specific treatment. Similarly, prophylactic antibiotics have not been proven to be beneficial. Dietary gluten restriction, used to reduce mucosal antigen challenge, also has not been shown to preserve kidney function. Phenytoin has also been tried without any benefit.
A subset of IgA nephropathy patients, who have minimal change disease on light microscopy and clinically have nephrotic syndrome, show an exquisite response to steroids, behaving more or less like minimal change disease. In other patients, the evidence for steroids is not compelling. Short courses of high dose steroids have been proven to lack benefit. However, in patients with preserved renal function and proteinuria (1-3.5 g/day), a recent prospective study has shown that 6 months regimen of steroids may lessen proteinuria and preserve renal function. However, the risks of long-term steroid use have to be weighed in such cases. It should be noted that the study had 10 years of patient follow-up data, and did show a benefit for steroid therapy; there was a lower chance of reaching end-stage renal disease (renal function so poor that dialysis was required) in the steroid group. Importantly, angiotensin-converting enzyme inhibitors were used in both groups equally.
Cyclophosphamide had been used in combination with anti-platelet/anticoagulants in unselected IgA nephropathy patients with conflicting results. Also, the side effect profile of this drug, including long term risk of malignancy and sterility, made it an unfavorable choice for use in young adults. However, one recent study, in a carefully selected high risk population of patients with declining GFR, showed that a combination of steroids and cyclophosphamide for the initial 3 months followed by azathioprine for a minimum of 2 years resulted in a significant preservation of renal function. Other agents such as mycophenolate mofetil, ciclosporin and mizoribine have also been tried with varying results.
A study from Mayo Clinic did show that long term treatment with omega-3 fatty acids results in reduction of progression to kidney failure, without, however, reducing proteinuria in a subset of patients with high risk of worsening kidney function. However, these results have not been reproduced by other study groups and in two subsequent meta-analyses. However, fish oil therapy does not have the drawbacks of immunosuppressive therapy. Also, apart from its unpleasant taste and abdominal discomfort, it is relatively safe to consume.
The events that tend to progressive kidney failure are not unique to IgA nephropathy and non-specific measures to reduce the same would be equally useful. These include low-protein diet and optimal control of blood pressure. The choice of the antihypertensive agent is open as long as the blood pressure is controlled to desired level. However, Angiotensin converting enzyme inhibitors and Angiotensin II receptor antagonists are favoured due to their anti-proteinuric effect.
Therapy for rapidly progressive glomerulonephritis is done via corticosteroids and cyclophosphamide. The predictor of kidney survival is serum creatinine value. The substitution of azathioprine for cyclophosphamide after a 90-day initial period is another option.Plasmapheresis can be used for patients who present with severe renal failure.
Treatment of acute proliferative glomerulonephritis consists of blood pressure (BP) control:also a renal biopsy may be needed to be performed at some point. A low-sodium diet may be needed when hypertension is present. In individuals with oliguric acute kidney injury, the amount of potassium should be controlled.
It is unclear whether or not acute proliferative glomerulonephritis (i.e., poststreptococcal glomerulonephritis) can be prevented with early prophylactic antibiotic therapy, with some authorities arguing that antibiotics can prevent development of acute proliferative glomerulonephritis, while others reject that antibiotics can prevent acute proliferative glomerulonephritis.
The treatment of kidney damage may reverse or delay the progression of the disease. Kidney damage is treated by prescribing drugs:
- Corticosteroids: the result is a decrease in the proteinuria and the risk of infection as well as a resolution of the edema. Prednisone is usually prescribed at a dose of 60 mg/m² of body surface area/day in a first treatment for 4–8 weeks. After this period the dose is reduced to 40 mg/m² for a further 4 weeks. Patients suffering a relapse or children are treated with prednisolone 2 mg/kg/day till urine becomes negative for protein. Then, 1.5 mg/kg/day for 4 weeks. Frequent relapses treated by: cyclophosphamide or nitrogen mustard or cyclosporin or levamisole. Patients can respond to prednisone in a number of different ways:
- Corticosteroid sensitive patient or early steroid-responder: the subject responds to the corticosteroids in the first 8 weeks of treatment. This is demonstrated by a strong diuresis and the disappearance of edemas, and also by a negative test for proteinuria in three urine samples taken during the night.
- Corticosteroid resistant patient or late steroid-responder: the proteinuria persists after the 8-week treatment. The lack of response is indicative of the seriousness of the glomerular damage, which could develop into chronic kidney failure.
- Corticosteroid tolerant patient: complications such as hypertension appear, patients gain a lot of weight and can develop aseptic or avascular necrosis of the hip or knee, cataracts and thrombotic phenomena and/or embolisms.
- Corticosteroid dependent patient: proteinuria appears when the dose of corticosteroid is decreased or there is a relapse in the first two weeks after treatment is completed.
The susceptibility testing in vitro to glucocorticoids on patient's peripheral blood mononuclear cells is associated with the incidence of not optimal clinical responses: the most sensitive patients in vitro have shown a higher incidence of corticodependence, while the most resistant patients in vitro showed a higher incidence of ineffective therapy.
- Immunosupressors (cyclophosphamide): only indicated in recurring nephrotic syndrome in corticosteroid dependent or intolerant patients. In the first two cases the proteinuria has to be negated before treatment with the immunosuppressor can begin, which involves a prolonged treatment with prednisone. The negation of the proteinuria indicates the exact moment when treatment with cyclophosphamide can begin. The treatment is continued for 8 weeks at a dose of 3 mg/kg/day, the immunosuppression is halted after this period. In order to be able to start this treatment the patient should not be suffering from neutropenia nor anaemia, which would cause further complications. A possible side effect of the cyclophosphamide is alopecia. Complete blood count tests are carried out during the treatment in order to give advance warning of a possible infection.
Analgesics may be needed for the abdominal and joint pains. It is uncertain as to whether HSP needs treatment beyond controlling the symptoms. Most patients do not receive therapy because of the high spontaneous recovery rate. Steroids are generally avoided. However, if they are given early in the disease episode, the duration of symptoms may be shortened, and abdominal pain can improve significantly. Moreover, the chance of severe kidney problems may be reduced. A systematic review of randomized clinical trials did not find any evidence that steroid treatment (prednisone) is effective at decreasing the likelihood of developing long-term kidney disease.
Evidence of worsening kidney damage would normally prompt a kidney biopsy. Treatment may be indicated on the basis of the appearance of the biopsy sample; various treatments may be used, ranging from oral steroids to a combination of intravenous methylprednisolone (steroid), cyclophosphamide and dipyridamole followed by prednisone. Other regimens include steroids/azathioprine, and steroids/cyclophosphamide (with or without heparin and warfarin). Intravenous immunoglobulin (IVIG) is occasionally used.
There is no evidence from randomized clinical trials that treating children who have HSP with antiplatelet agent prevents persistent kidney disease. There is also no evidence from randomized clinical trials that treating children or adults with cyclophosphamide prevents severe kidney disease. Heparin treatment is not justified.
Treating proteinuria mainly needs proper diagnosis of the cause.
The most common cause is diabetic nephropathy; in this case, proper glycemic control may slow the progression. Medical management consists of angiotensin converting enzyme (ACE) inhibitors, which are typically first-line therapy for proteinuria. In patients whose proteinuria is not controlled with ACE inhibitors, the addition of an aldosterone antagonist (i.e., spironolactone) or angiotensin receptor blocker (ARB) may further reduce protein loss. Caution must be used if these agents are added to ACE inhibitor therapy due to the risk of hyperkalemia.
Proteinuria secondary to autoimmune disease should be treated with steroids or steroid-sparing agent plus the use of ACE inhibitors.
The aim of the medical treatment is to slow the progression of chronic kidney disease by reducing blood pressure and albumin levels. The current published guidelines define ideal BP of <130/80 mmHg for patients with hypertensive nephropathy; studies show that anything higher or lower than this can increase cardiovascular risk. According to the African American Study of Kidney Disease (AASK) trial, after an additional 5 years follow-up upon completion of the 10-year trial, up to 65% of the cohort had progressive nephropathy despite having controlled the mean systolic BP level <135 mmHg.
ACE inhibitors, angiotensin receptor blockers, direct renin inhibitors and aldosterone antagonists, are pharmacological treatments that can be used to lower BP to target levels; hence reducing neuropathy and proteinuria progression. The management plan should be individualized based on the condition of the patients including comorbidities and previous medical history.
In addition, there are lifestyle changes that can be made. Weight reduction, exercise, reducing salt intake can be done to manage hypertensive nephropathy.
The objective of this treatment is to treat the imbalances brought about by the illness: edema, hypoalbuminemia, hyperlipemia, hypercoagulability and infectious complications.
- Edema: a return to an unswollen state is the prime objective of this treatment of nephrotic syndrome. It is carried out through the combination of a number of recommendations:
- Rest: depending on the seriousness of the edema and taking into account the risk of thrombosis caused by prolonged bed rest.
- Medical nutrition therapy: based on a diet with the correct energy intake and balance of proteins that will be used in synthesis processes and not as a source of calories. A total of 35 kcal/kg body weight/day is normally recommended. This diet should also comply with two more requirements: the first is to not consume more than 1 g of protein/kg body weight/ day, as a greater amount could increase the degree of proteinuria and cause a negative nitrogen balance. Patients are usually recommended lean cuts of meat, fish, and poultry. The second guideline requires that the amount of water ingested is not greater than the level of diuresis. In order to facilitate this the consumption of salt must also be controlled, as this contributes to water retention. It is advisable to restrict the ingestion of sodium to 1 or 2 g/day, which means that salt cannot be used in cooking and salty foods should also be avoided. Foods high in sodium include seasoning blends (garlic salt, Adobo, season salt, etc.) canned soups, canned vegetables containing salt, luncheon meats including turkey, ham, bologna, and salami, prepared foods, fast foods, soy sauce, ketchup, and salad dressings. On food labels, compare milligrams of sodium to calories per serving. Sodium should be less than or equal to calories per serving.
- Medication: The pharmacological treatment of edema is based on the prescription of diuretic drugs (especially loop diuretics, such as furosemide). In severe cases of edema (or in cases with physiological repercussions, such as scrotal, preputial or urethral edema) or in patients with one of a number of severe infections (such as sepsis or pleural effusion), the diuretics can be administered intravenously. This occurs where the risk from plasmatic expansion is considered greater than the risk of severe hypovolemia, which can be caused by the strong diuretic action of intravenous treatment. The procedure is the following:
- Hypoalbuminemia: is treated using the medical nutrition therapy described as a treatment for edema. It includes a moderate intake of foods rich in animal proteins.
- Hyperlipidaemia: depending of the seriousness of the condition it can be treated with medical nutrition therapy as the only treatment or combined with drug therapy. The ingestion of cholesterol should be less than 300 mg/day, which will require a switch to foods that are low in saturated fats. Avoid saturated fats such as butter, cheese, fried foods, fatty cuts of red meat, egg yolks, and poultry skin. Increase unsaturated fat intake, including olive oil, canola oil, peanut butter, avocadoes, fish and nuts. In cases of severe hyperlipidaemia that are unresponsive to nutrition therapy the use of hypolipidemic drugs, may be necessary (these include statins, fibrates and resinous sequesters of bile acids).
- Thrombophilia: low molecular weight heparin (LMWH) may be appropriate for use as a prophylactic in some circumstances, such as in asymptomatic patients that have no history of suffering from thromboembolism. When the thrombophilia is such that it leads to the formation of blood clots, heparin is given for at least 5 days along with oral anticoagulants (OAC). During this time and if the prothrombin time is within its therapeutic range (between 2 and 3), it may be possible to suspend the LMWH while maintaining the OACs for at least 6 months.
- Infectious complications: an appropriate course of antibacterial drugs can be taken according to the infectious agent.
In addition to these key imbalances, vitamin D and calcium are also taken orally in case the alteration of vitamin D causes a severe hypocalcaemia, this treatment has the goal of restoring physiological levels of calcium in the patient.
- Achieving better blood glucose level control if the patient is diabetic.
- Blood pressure control. ACE inhibitors are the drug of choice. Independent of their blood pressure lowering effect, they have been shown to decrease protein loss.
Aggressive treatment of high blood lipids is warranted. Low-protein, low-salt diet may result in slower progression of CKD and reduction in proteinuria as well as controlling symptoms of advanced CKD to delay dialysis start. Replacement of erythropoietin and calcitriol, two hormones processed by the kidney, is often necessary in people with advanced disease. Guidelines recommend treatment with parenteral iron prior to treatment with erythropoietin. A target hemoglobin level of 9–12 g/dL is recommended. The normalization of hemoglobin has not been found to be of benefit. It is unclear if androgens help with anemia. Phosphate binders are also used to control the serum phosphate levels, which are usually elevated in advanced chronic kidney disease. Although the evidence for them is limited, phosphodiesterase-5 inhibitors and zinc show potential for helping men with sexual dysfunction.
At stage 5 CKD, renal replacement therapy is usually required, in the form of either dialysis or a transplant.
Generally, angiotensin converting enzyme inhibitors (ACEIs) or angiotensin II receptor antagonists (ARBs) are used, as they have been found to slow the progression. They have also been found to reduce the risk of major cardiovascular events such as myocardial infarction, stroke, heart failure, and death from cardiovascular disease when compared to placebo in individuals with CKD. Furthermore, ACEIs may be superior to ARBs for protection against progression to kidney failure and death from any cause in those with CKD. Aggressive blood pressure lowering decreases peoples risk of death.
Although the use of ACE inhibitors and ARBs represents the current standard of care for people with CKD, people progressively lose kidney function while on these medications, as seen in the IDNT and RENAL studies, which reported a decrease over time in estimated GFR (an accurate measure of CKD progression, as detailed in the K/DOQI guidelines) in people treated by these conventional methods.
Management of sickle nephropathy is not separate from that of overall patient management. In addition, however, the use of ACE inhibitors has been associated with improvement of the hyperfiltration glomerulopathy. Three-year graft and patient survival in kidney transplant recipients with sickle nephropathy is lower when compared to those with other causes of end-stage kidney disease.
Treatment of analgesic nephropathy begins with the discontinuation of analgesics, which often halts the progression of the disease and may even result in normalization of kidney function.
The disease can be treated only to slow down the development, by use of cyclosporine A and ACE inhibitors, but not stopped or cured.
The myriad causes of intrinsic AKI require specific therapies. For example, intrinsic AKI due to vasculitis or glomerulonephritis may respond to steroid medication, cyclophosphamide, and (in some cases) plasma exchange. Toxin-induced prerenal AKI often responds to discontinuation of the offending agent, such as ACE inhibitors, ARB antagonists, aminoglycosides, penicillins, NSAIDs, or paracetamol.
The use of diuretics such as furosemide, is widespread and sometimes convenient in improving fluid overload. It is not associated with higher mortality (risk of death), nor with any reduced mortality or length of intensive care unit or hospital stay.
In prerenal AKI without fluid overload, administration of intravenous fluids is typically the first step to improving kidney function. Volume status may be monitored with the use of a central venous catheter to avoid over- or under-replacement of fluid.
If low blood pressure persists despite providing a person with adequate amounts of intravenous fluid, medications that increase blood pressure (vasopressors) such as norepinephrine and in certain circumstances medications that improve the heart's ability to pump (known as inotropes) such as dobutamine may be given to improve blood flow to the kidney. While a useful vasopressor, there is no evidence to suggest that dopamine is of any specific benefit and may be harmful.
Currently, the only clinical/pharmacological treatment available for ADPKD consists in reducing the speed in gain of total kidney volume (TKV) with aquaretics (i.e. tolvaptan), which can alleviate pain while giving the patients a better quality of life for over a mean of 3 years. After this period, patients can restart gaining TKV at pre-treatment rates and may eventually have to go through dialysis and kidney transplant. Paliative treatment modalities involve symptomatic medications (non-opioid and opioid analgesics) for abdominal/retroperitoneal pain. Before the advent of aquaretic medication, the only option for analgesic-resistant pain were simple or complex surgical procedures (i.e. renal cyst aspiration, cyst decortication, renal denervation and nephrectomy), which can result in complications inherent to surgery.
Management of hematuria is aimed at treating secondary causes of hematuria. If hematuria is a result of a UTI, treatment with antibiotics is usually initiated and urine testing repeated after 6 weeks. If hematuria is secondary to a kidney stone, then management depends on the size of the kidney stone. If the stone is small enough, usually less than 1 cm, then conservative management with analgesics and fluid hydration may be sufficient, however stones that are too bid may require removal by a urologist. Another common cause of hematuria is benign enlargement of the prostate (BPH), treatment is aimed at reducing the size of the bladder with medications like finasteride and symptomatic management with drugs like terazonsin or tamsulosin.
For people with exercise induced hematuria, management is conservative and involves cessation of strenuous activities and keeping hydrated. If the cause of hematuria is a result of malignancy, treatment and management depends on the type and stage of cancer and can involve chemotherapy, radiation or surgical resection of the tumor or organ involved.
In 2014, Japan was the first country in the world to approve a pharmacological treatment for ADPKD followed by Canada and Europe, which approved the drug tolvaptan for ADPKD patients in the beginning of 2015. Tolvaptan, an aquaretic drug, is a vasopressin receptor 2 (V2) antagonist. Pre-clinical studies had suggested that the molecule cAMP could be involved in the enlargement of ADPKD cysts, and studies on rodents confirmed the role of vasopressin in increasing the levels of cAMP in the kidney, which laid the basis for the conduction of clinical studies. Because data from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) led by Mayo Clinic showed that total kidney volume (TKV) predicted the risk of developing renal insufficiency in patients with ADPKD, the TEMPO 3:4 trial, which enrolled patients from 129 sites worldwide from 2007 to 2009, evaluated TKV as a primary end-point to test the efficacy of tolvaptan in ADPKD patients. That study showed a significant decrease in the ratio of TKV increase and deterring of renal function decline in ADPKD patients after treatment with tolvaptan; however, because laboratory test results regarding liver function appeared elevated in a percentage of patients enrolled in that study, the approval of the drug was either delayed by regulatory agencies or, as in case of the US, altogether denied.
Treatment of renal papillary necrosis is supportive, any obstruction (urethral) can be dealt with via stenting. This condition is not linked to a higher possibility of renal failure. Control of infection is important, thus antimicrobial treatment is begun, so as to avert surgery (should the infection not respond).
The goals of treatment are to slow the progression of kidney damage and control related complications. The main treatment, once proteinuria is established, is ACE inhibitor medications, which usually reduce proteinuria levels and slow the progression of diabetic nephropathy. Other issues that are important in the management of this condition include control of high blood pressure and blood sugar levels (see diabetes management), as well as the reduction of dietary salt intake.
Scleroderma renal crisis, the occurrence of acute renal failure and malignant hypertension (very high blood pressure with evidence of organ damage) in people with scleroderma, is effectively treated with drugs from the class of the ACE inhibitors. The benefit of ACE inhibitors extends even to those who have to commence dialysis to treat their kidney disease, and may give sufficient benefit to allow the discontinuation of renal replacement therapy.
More specifically, glomerulosclerosis can refer to:
- Focal segmental glomerulosclerosis
- Nodular glomerulosclerosis (diabetic)