Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In the middle of the 20th century the principal treatment for some of the amino acid disorders was restriction of dietary protein and all other care was simply management of complications. In the past twenty years, enzyme replacement, gene therapy, and organ transplantation have become available and beneficial for many previously untreatable disorders. Some of the more common or promising therapies are listed:
The primary treatment method for fatty-acid metabolism disorders is dietary modification. It is essential that the blood-glucose levels remain at adequate levels to prevent the body from moving fat to the liver for energy. This involves snacking on low-fat, high-carbohydrate nutrients every 2–6 hours. However, some adults and children can sleep for 8–10 hours through the night without snacking.
The management of Glycogen storage disease IX requires treatment of symptoms by frequent intake of complex carbohydrates and protein to combat the low blood sugar. A nutritionist will advise on suitable diets. Liver function is regularly monitored and problems managed as they arise. However, liver problems have only been successfully treated by a transplant. Routine checks of metabolism are needed to ensure blood sugar (glucose) and ketones are managed. Regular moderate exercise is beneficial, although over-vigorous exercise is to be avoided, especially in those with enlarged livers.
Carnitor - an L-carnitine supplement that has shown to improve the body's metabolism in individuals with low L-carnitine levels. It is only useful for Specific fatty-acid metabolism disease.
Homozygous FH is harder to treat. The LDL receptors are minimally functional, if at all. Only high doses of statins, often in combination with other medications, are modestly effective in improving lipid levels. If medical therapy is not successful at reducing cholesterol levels, LDL apheresis may be used; this filters LDL from the bloodstream in a process reminiscent of dialysis. Very severe cases may be considered for a liver transplant; this provides a liver with normally functional LDL receptors, and leads to rapid improvement of the cholesterol levels, but at the risk of complications from any solid organ transplant (such as rejection, infections, or side-effects of the medication required to suppress rejection). Other surgical techniques include partial ileal bypass surgery, in which part of the small bowel is bypassed to decrease the absorption of nutrients and hence cholesterol, and portacaval shunt surgery, in which the portal vein is connected to the vena cava to allow blood with nutrients from the intestine to bypass the liver.
Lomitapide, an inhibitor of the microsomal triglyceride transfer protein, was approved by the US FDA in December 2012 as an orphan drug for the treatment of homozygous familial hypercholesterolemia. In January 2013, The US FDA also approved mipomersen, which inhibits the action of the gene apolipoprotein B, for the treatment of homozygous familial hypercholesterolemia. Gene therapy is a possible future alternative.
The only treatment for classic galactosemia is eliminating lactose and galactose from the diet. Even with an early diagnosis and a restricted diet, however, some individuals with galactosemia experience long-term complications such as speech difficulties, learning disabilities, neurological impairment (e.g. tremors, etc.), and ovarian failure. Symptoms have not been associated with Duarte galactosemia, and many individuals with Duarte galactosemia do not need to restrict their diet at all. However, research corroborates a previously overlooked theory that Duarte galactosemia may lead to language developmental issues in children with no clinical symptoms. Infants with classic galactosemia cannot be breast-fed due to lactose in human breast milk and are usually fed a soy-based formula.
Galactosemia is sometimes confused with lactose intolerance, but galactosemia is a more serious condition. Lactose intolerant individuals have an acquired or inherited shortage of the enzyme lactase, and experience abdominal pains after ingesting dairy products, but no long-term effects. In contrast, a galactosemic individual who consumes galactose can cause permanent damage to their bodies.
Long term complication of galactosemia includes:
- Speech deficits
- Ataxia
- Dysmetria
- Diminished bone density
- Premature ovarian failure
- Cataract
FH is usually treated with statins. Statins act by inhibiting the enzyme hydroxymethylglutaryl CoA reductase (HMG-CoA-reductase) in the liver. In response, the liver produces more LDL receptors, which remove circulating LDL from the blood. Statins effectively lower cholesterol and LDL levels, although sometimes add-on therapy with other drugs is required, such as bile acid sequestrants (cholestyramine or colestipol), nicotinic acid preparations or fibrates. Control of other risk factors for cardiovascular disease is required, as risk remains somewhat elevated even when cholesterol levels are controlled. Professional guidelines recommend that the decision to treat a person with FH with statins should not be based on the usual risk prediction tools (such as those derived from the Framingham Heart Study), as they are likely to underestimate the risk of cardiovascular disease; unlike the rest of the population, FH have had high levels of cholesterol since birth, probably increasing their relative risk. Prior to the introduction of the statins, clofibrate (an older fibrate that often caused gallstones), probucol (especially in large xanthomas) and thyroxine were used to reduce LDL cholesterol levels.
More controversial is the addition of ezetimibe, which inhibits cholesterol absorption in the gut. While it reduces LDL cholesterol, it does not appear to improve a marker of atherosclerosis called the intima-media thickness. Whether this means that ezetimibe is of no overall benefit in FH is unknown.
There are no interventional studies that directly show mortality benefit of cholesterol lowering in FH. Rather, evidence of benefit is derived from a number of trials conducted in people who have polygenic hypercholesterolemia (in which heredity plays a smaller role). Still, a 1999 observational study of a large British registry showed that mortality in people with FH had started to improve in the early 1990s when statins were introduced.
A cohort study suggested that treatment of FH with statins leads to a 48% reduction in death from coronary heart disease to a point where people are no more likely to die of coronary heart disease than the general population. However, if the person already had coronary heart disease the reduction was 25%. The results emphasize the importance of early identification of FH and treatment with statins.
Alirocumab and evolocumab, both monoclonal antibodies against PCSK9, are specifically indicated as adjunct to diet and maximally tolerated statin therapy for the treatment of adults with heterozygous familial hypercholesterolemia, who require additional lowering of LDL cholesterol.
For most horses, diet has a significant impact on the degree of clinical signs. PSSM horses fed diets high in nonstructural carbohydrates (NSC), which stimulate insulin secretion, have been shown to have increased severity of rhabdomyolysis with exercise. Current recommendations for horses with PSSM include a low-starch, high-fat diet. Low-starch diets produce low blood glucose and insulin levels after eating, which may reduce the amount of glucose taken up by the muscle cells. High fat diets increase free fatty acid concentrations in the blood, which may promote the use of fat for energy (via free fatty acid oxidation) over glucose metabolism. Horses with the most severe clinical signs often show the greatest improvement on the diet.
Dietary recommendations usually include a combination of calorie restriction, reduction of daily NSC content, and an increase in dietary fat. Diet recommendations need to be balanced with the animal's body condition score and exercise level, as it may be beneficial to wait on increasing dietary fat after an obese animal has lost weight. The diet should have <10% of digestible energy coming from NSC, and 15-20% of daily digestible energy coming from fat.
There is no cure for GALT deficiency, in the most severely affected patients, treatment involves a galactose free diet for life. Early identification and implementation of a modified diet greatly improves the outcome for patients. The extent of residual GALT enzyme activity determines the degree of dietary restriction. Patients with higher levels of residual enzyme activity can typically tolerate higher levels of galactose in their diets. As patients get older, dietary restriction is often relaxed. With the increased identification of patients and their improving outcomes, the management of patients with galactosemia in adulthood is still being understood.
After diagnosis, patients are often supplemented with calcium and vitamin D3. Long-term manifestations of the disease including ovarian failure in females, ataxia. and growth delays are not fully understood. Routine monitoring of patients with GALT deficiency includes determining metabolite levels (galactose 1-phosphate in red blood cells and galactitol in urine) to measure the effectiveness of and adherence to dietary therapy, ophthalmologic examination for the detection of cataracts and assessment of speech, with the possibility of speech therapy if developmental verbal dyspraxia is evident.
Treatment is depended on the type of glycogen storage disease. E.g. GSD I is typically treated with frequent small meals of carbohydrates and cornstarch to prevent low blood sugar, while other treatments may include allopurinol and human granulocyte colony stimulating factor.
It has been suggested that a possible method of treatment for histidinemia is through the adoption of a diet that is low in histidine intake. However, the requirement for such dietary restrictions is typically unnecessary for 99% of all cases of histidinemia.
Direct treatment that stimulates the pyruvate dehydrogenase complex (PDC), provides alternative fuels, and prevents acute worsening of the syndrome. However, some correction of acidosis does not reverse all the symptoms. CNS damage is common and limits a full recovery. Ketogenic diets, with high fat and low carbohydrate intake have been used to control or minimize lactic acidosis and anecdotal evidence shows successful control of the disease, slowing progress and often showing rapid improvement. No study has yet been published demonstrating the effectiveness of the ketogenic diet for treatment of PDCD.
There is some evidence that dichloroacetate reduces the inhibitory phosphorylation of pyruvate dehydrogenase complex and thereby activates any residual functioning complex. Resolution of lactic acidosis is observed in patients with E1 alpha enzyme subunit mutations that reduce enzyme stability. However, treatment with dichloroacetate does not improve neurological damage. Oral citrate is often used to treat acidosis.
As of 2015 there was no cure for APDB, instead symptoms are managed. There are various approaches to managing neurogenic bladder dysfunction, physical therapy and mobility aids to help with walking, and dementia can be managed with occupational therapy, counseling and drugs.
Horses with PSSM show fewer clinical signs if their exercise is slowly increased over time (i.e. they are slowly conditioned). Additionally, they are much more likely to develop muscle stiffness and rhabdomyolysis if they are exercised after prolonged stall rest.
Horses generally have fewer clinical signs when asked to perform short bouts of work at maximal activity level (aerobic exercise), although they have difficulty achieving maximal speed and tire faster than unaffected horses. They have more muscle damage when asked to perform lower intensity activity over a longer period of time (aerobic activity), due to an energy deficit in the muscle.
Individuals presenting with Type III galactosemia must consume a lactose- and galactose-restricted diet devoid of dairy products and mucilaginous plants. Dietary restriction is the only current treatment available for GALE deficiency. As glycoprotein and glycolipid metabolism generate endogenous galactose, however, Type III galactosemia may not be resolved solely through dietary restriction.
Galactose is converted into glucose by the action of three enzymes, known as the Leloir pathway. There are diseases associated with deficiencies of each of these three enzymes:
Currently, there is no specific treatment to correct the LCAT deficiency so therapy is focused on symptom relief. Corneal transplant may be considered for patients presenting with severely impaired vision caused by cholesterol corneal opacities. Dialysis may be required for patients presenting with renal failure, and kidney transplant may be considered.
Treatment or management of organic acidemias vary; eg see methylmalonic acidemia, propionic acidemia, isovaleric acidemia, and maple syrup urine disease.
As of 1984 there were no effective treatments for all of the conditions, though treatment for some included a limited protein/high carbohydrate diet, intravenous fluids, amino acid substitution, vitamin supplementation, carnitine, induced anabolism, and in some cases, tube-feeding.
As of 1993 ketothiolase deficiency and other OAs were managed by trying to restore biochemical and physiologic homeostasis; common therapies included restricting diet to avoid the precursor amino acids and use of compounds to either dispose of toxic metabolites or increase enzyme activity.
The rate of progression varies significantly from person to person.
There is not good data on outcomes; it appears that APBD likely leads to earlier death, but people with APBD can live many years after diagnosis with relatively good quality of life.
Renal failure is the major cause of morbidity and mortality in complete LCAT deficiency, while in partial deficiency (fish eye disease) major cause of morbidity is visual impairment due to corneal opacity. These patients have low HDL cholesterol but surprisingly premature atherosclerosis is not seen. However, there are some reported cases.
Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
The treatment is some form of Vitamin E supplementation.
Aggressive vitamin E replacement therapy has been shown to either prevent, halt or improve visual abnormalities.
Glycogen storage disease type IV, also known as Anderson’s Disease, is a form of glycogen storage disease, which is caused by an inborn error of metabolism. It is the result of a mutation in the GBE1 gene, which causes a defect in the glycogen branching enzyme. Therefore, glycogen is not made properly and abnormal glycogen molecules accumulate in cells; most severely in cardiac and muscle cells. The severity of this disease varies on the amount of enzyme produced. Glycogen Storage Disease Type IV is autosomal recessive, which means each parent has a mutant copy of the gene but show no symptoms of the disease. It affects 1 in 800,000 individuals worldwide, with 3% of all Glycogen Storage Diseases being type IV.
Mauriac syndrome is a rare complication of diabetes mellitus type 1 characterized by extreme hepatomegaly due to glycogen deposition, along with growth failure and delayed puberty. It occurs in children and adolescents with type 1 diabetes as a result of abnormally high blood sugar levels and the symptoms tend to rectify with attainment of normal blood sugar levels. Abnormally high blood sugar levels are relatively common among patients with type I diabetes, but Mauriac syndrome is rare suggesting that a factor affecting glycogen metabolism in addition to the high level of blood sugar is necessary to cause the syndrome. A study of an adolescent boy with severe Mauriac syndrome found a mutation in PHKG2 which is the catalytic subunit of glycogen phosphorylase kinase (PhK). PhK is a large enzyme complex responsible for the activation of glycogen phosphorylase, the first enzyme in the pathway of glycogen metabolism. Expression of the mutant PHKG2 in a human liver cell line inhibited the enzyme activity of the PhK complex and increased glycogen levels. The mother of the boy with Mauriac syndrome possessed the mutant PHKG2, but did not have diabetes or a clinically detectable enlarged liver. The father of the boy had type 1 diabetes with abnormally high blood sugar levels and the size of his liver and his growth were normal. The study suggests that a mutant enzyme of glycogen metabolism in addition to an abnormally high blood glucose level is necessary to cause Mauriac syndrome.
Direct removal of lactate from the body (e.g. with hemofiltration) is difficult, with limited evidence for benefit. In type A lactic acidosis, treatment consists of effective management of the underlying cause, and limited evidence supports the use of sodium bicarbonate solutions to improve the pH (which is associated with increased carbon dioxide generation and may reduce the calcium levels).
In type B lactic acidosis produced by medication, withdrawal of the medication may be necessary to resolve the lactic acidosis.
Lactic acidosis in the context of mitochondrial disorders (type B3) may be treated with a ketogenic diet and possibly with dichloroacetate (DCA), although this may be complicated by peripheral neuropathy and has a weak evidence base.