Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatments vary according to the underlying disease and the degree of the impairment of the male fertility. Further, in an infertility situation, the fertility of the female needs to be considered.
Pre-testicular conditions can often be addressed by medical means or interventions.
Testicular-based male infertility tends to be resistant to medication. Usual approaches include using the sperm for intrauterine insemination (IUI), in vitro fertilization (IVF), or IVF with intracytoplasmatic sperm injection (ICSI). With IVF-ICSI even with a few sperm pregnancies can be achieved.
Obstructive causes of post-testicular infertility can be overcome with either surgery or IVF-ICSI. Ejaculatory factors may be treatable by medication, or by IUI therapy or IVF.
Vitamin E helps counter oxidative stress, which is associated with sperm DNA damage and reduced sperm motility. A hormone-antioxidant combination may improve sperm count and motility. However there is only some low quality evidence from few small studies that oral antioxidants given to males in couples undergoing in vitro fertilisation for male factor or unexplained subfertility result in higher live birth rate. It is unclear if there are any adverse effects.
Administration of luteinizing hormone (LH) (or human chorionic gonadotropin) and follicle-stimulating hormone (FSH) is very effective in the treatment of male infertility due to hypogonadotropic hypogonadism. Although controversial, off-label clomiphene citrate, an antiestrogen, may also be effective by elevating gonadotropin levels.
Though androgens are absolutely essential for spermatogenesis and therefore male fertility, exogenous testosterone therapy has been found to be ineffective in benefiting men with low sperm count. This is thought to be because very high local levels of testosterone in the testes (concentrations in the seminiferous tubules are 20- to 100-fold greater than circulating levels) are required to mediate spermatogenesis, and exogenous testosterone therapy (which is administered systemically) cannot achieve these required high local concentrations (at least not without extremely supraphysiological dosages). Moreover, exogenous androgen therapy can actually impair or abolish male fertility by suppressing gonadotropin secretion from the pituitary gland, as seen in users of androgens/anabolic steroids (who often have partially or completely suppressed sperm production). This is because suppression of gonadotropin levels results in decreased testicular androgen production (causing diminished local concentrations in the testes) and because FSH is independently critical for spermatogenesis. In contrast to FSH, LH has little role in male fertility outside of inducing gonadal testosterone production.
Estrogen, at some concentration, has been found to be essential for male fertility/spermatogenesis. However, estrogen levels that are too high can impair male fertility by suppressing gonadotropin secretion and thereby diminishing intratesticular androgen levels. As such, clomiphene citrate (an antiestrogen) and aromatase inhibitors such as testolactone or anastrozole have shown effectiveness in benefiting spermatogenesis.
Low-dose estrogen and testosterone combination therapy may improve sperm count and motility in some men, including in men with severe oligospermia.
Treatment depends on the cause of infertility, but may include counselling, fertility treatments, which include in vitro fertilization. According to ESHRE recommendations, couples with an estimated live birth rate of 40% or higher per year are encouraged to continue aiming for a spontaneous pregnancy. Treatment methods for infertility may be grouped as medical or complementary and alternative treatments. Some methods may be used in concert with other methods. Drugs used for both women and men include clomiphene citrate, human menopausal gonadotropin (hMG), follicle-stimulating hormone (FSH), human chorionic gonadotropin (hCG), gonadotropin-releasing hormone (GnRH) analogues, aromatase inhibitors, and metformin.
Medical treatment of infertility generally involves the use of fertility medication, medical device, surgery, or a combination of the following. If the sperm are of good quality and the mechanics of the woman's reproductive structures are good (patent fallopian tubes, no adhesions or scarring), a course of ovarian stimulating medication maybe used. The physician or WHNP may also suggest using a conception cap cervical cap, which the patient uses at home by placing the sperm inside the cap and putting the conception device on the cervix, or intrauterine insemination (IUI), in which the doctor or WHNP introduces sperm into the uterus during ovulation, via a catheter. In these methods, fertilization occurs inside the body.
If conservative medical treatments fail to achieve a full term pregnancy, the physician or WHNP may suggest the patient undergo in vitro fertilization (IVF). IVF and related techniques (ICSI, ZIFT, GIFT) are called assisted reproductive technology (ART) techniques.
ART techniques generally start with stimulating the ovaries to increase egg production. After stimulation, the physician surgically extracts one or more eggs from the ovary, and unites them with sperm in a laboratory setting, with the intent of producing one or more embryos. Fertilization takes place outside the body, and the fertilized egg is reinserted into the woman's reproductive tract, in a procedure called embryo transfer.
Other medical techniques are e.g. tuboplasty, assisted hatching, and Preimplantation genetic diagnosis.
Male primary or hypergonadogropic hypogonadism is often treated with testosterone replacement therapy if they are not trying to conceive. Adverse effects of testosterone replacement therapy include increased cardiovascular events (including strokes and heart attacks) and death. The Food and Drug Administration (FDA) stated in 2015 that neither the benefits nor the safety of testosterone have been established for low testosterone levels due to aging. The FDA has required that testosterone pharmaceutical labels include warning information about the possibility of an increased risk of heart attacks and stroke.
Commonly used testosterone replacement therapies include transdermal (through the skin) using a patch or gel, injections, or pellets. Oral testosterone is no longer used in the U.S. because it is broken down in the liver and rendered inactive; it also can cause severe liver damage. Like many hormonal therapies, changes take place over time. It may take as long as 2–3 months at optimum level to reduce the symptoms, particularly wordfinding and cognitive dysfunction. Testosterone levels in the blood should be evaluated to ensure the increase is adequate. Levels between 400 and 700 ng/dL are considered appropriate mid-dose levels. Treatment usually starts with 200 mg intramuscular testosterone, repeated every 14 days.
While historically, men with prostate cancer risk were warned against testosterone therapy, that has shown to be a myth.
Other side effects can include an elevation of the hematocrit to levels that require blood withdrawal (phlebotomy) to prevent complications from excessively thick blood. Gynecomastia (growth of breasts in men) sometimes occurs. Finally, some physicians worry that obstructive sleep apnea may worsen with testosterone therapy, and should be monitored.
Another treatment for hypogonadism is human chorionic gonadotropin (hCG). This stimulates the LH receptor, thereby promoting testosterone synthesis. This will not be effective in men who simply cannot make testosterone anymore (primary hypogonadism) and the failure of hCG therapy is further support for the existence of true testicular failure in a patient. It is particularly indicated in men with hypogonadism who wish to retain their fertility, as it does not suppress spermatogenesis like testosterone replacement therapy does.
For both men and women, an alternative to testosterone replacement is low-dose clomifene treatment, which can stimulate the body to naturally increase hormone levels while avoiding infertility and other side effects that can result from direct hormone replacement therapy. This therapy has only been shown helpful for men with secondary hypogonadism. Recent studies have shown it can be safe and effective monotherapy for up to 2 years in patients with intact testicular function and impaired function of the HPTA(http://www.nature.com/ijir/journal/v15/n3/full/3900981a.html). Clomifene blocks estrogen from binding to some estrogen receptors in the hypothalamus, thereby causing an increased release gNRH and subsequently LH from the pituitary. Clomifene is a Selective Estrogen Reuptake Modulator (SERM).
Generally clomifene does not have adverse effects at the doses used for this purpose. Clomifene at much higher doses is used to induce ovulation and has significant adverse effects in such a setting.
For women with hypogonadism, estradiol and progesterone are often replaced. Some types of fertility defects can be treated, others cannot. Some physicians also give testosterone to women, mainly to increase libido.
Research into globozoospermia is aimed at improving understanding of its cause and developing treatment options.
A problem for people with penile agenesis is the absence of a urinary outlet. Before genital metamorphosis, the urethra runs down the anal wall, to be pulled away by the genital tubercle during male development. Without male development this does not occur. The urethra can be surgically redirected to the rim of the anus immediately after birth to enable urination and avoid consequent internal irritation from urea concentrate. In such cases, the perineum may be left devoid of any genitalia, male or female.
A working penis transplant on to an agenetic patient has never been successful. Only one major penis graft was successfully completed. This occurred in China and the patient shortly rejected it on psychological grounds. However a full female or agenetic to male transplant is not yet facilitated to fulfil full reproductive functions.
On March 18, 2013, it was announced that Andrew Wardle, a British man born without a penis, was going to receive a pioneering surgery to create a penis for him. The surgeons hope to "fold a large flap of skin from his arm — complete with its blood vessels and nerves — into a tube to graft onto his pubic area." If the surgery goes well, the odds of starting a family are very good.
The aim for hormone replacement therapy (HRT) for both men and women is to ensure that the level of circulating hormones (testosterone for men and oestrogen/progesterone for women) is at the normal physiological level for the age of the patient. At first the treatment will produce most of the physical and psychological changes seen at puberty, with the major exception that there will be no testicular development in men and no ovulation in women.
After the optimum physical development has been reached HRT for men will continue to ensure that the normal androgen function is maintained; such as libido, muscle development, energy levels, hair growth, and sexual function. In women, a variety of types of HRT will either give a menstruation cycle or not as preferred by the patient. HRT is very important in both men and women to maintain bone density and to reduce the risk of early onset osteoporosis.
The fertility treatments used for both men and women would still include hormone replacement in their action.
There are a range of different preparations available for HRT for both men and women; a lot of these, especially those for women are the same used for standard HRT protocols used when hormone levels fall in later life or after the menopause.
For males with KS / CHH the types of delivery method available include daily patches, daily gel use, daily capsules, sub cutaneous or intramuscular injections or six monthly implants. Different formulations of testosterone are used to ensure both the anabolic and androgenic effects of testosterone are achieved.
Testosterone undecanoate is commonly used worldwide, though less so in the US, for treating male KS / CHH patients and has proved to be effective in maintaining good testosterone levels with an increased injection period of up to 12 weeks.
The precise treatment method used and interval between injections will vary from patient to patient and may need to be adjusted to maintain a physiological normal level of testosterone over a longer period of time to prevent the mood swings or adverse effects that can occur if testosterone levels are too high or low. Some treatments may work better with some patients than others so it might be a case of personal choice as which one to use.
As an alternative human chorionic gonadotrophin (hCG) can also be used to stimulate natural testosterone production. It acts in the same way as LH; stimulating the Leydig cells in the testes to produce testosterone. hCG can be used as pre-cursor to male fertility treatments but it can be used in isolation just for testosterone production.
There are no specialist HRT treatments available just for women with KS/HH but there are multitude of different HRT products on the market including oral contraceptives and standard post-menopause products. Pills are popular but patches are also available. It may take some trial and error to find the appropriate HRT for the patient depending on how her body reacts to the particular HRT. Specialist medical advice will be required to ensure the correct levels of oestrogen and progesterone are maintained each month, depending on whether the patient requires continuous HRT (no-bleed) or a withdrawal option to create a "menstrual" type bleed. This withdrawal bleed can be monthly or over longer time periods depending on the type of medication used.
Fertility treatments for people with KS/HH will require specialist advice from doctors experienced in reproductive endocrinology. There is a good success rate for achieving fertility for patients with KS/HH, with some experts quoting up to a 70% success rate, if IVF techniques are used as well. However, there are factors that can have a negative effect on fertility and specialist advice will be required to determine if these treatments are likely to be successful.
Fertility treatments involve the administration of the gonadotropins LH and FSH in order to stimulate the production and release of eggs and sperm. Women with KS or HH have an advantage over the men as their ovaries normally contain a normal number of eggs and it sometimes only takes a few months of treatment to achieve fertility while it can take males up to two years of treatment to achieve fertility.
A new potential new form of fertility treatment underwent clinical trials in 2013 and 2014 by Merck Sharp & Dohme. The trial evaluated a longer acting form of FSH, in the form of corifollitropin alfa. Injections were taken fortnightly instead of the normal twice weekly it is hoped that this would induce sperm production within months rather than the two years it can take with currently available medications.
Human chorionic gonadotrophin (hCG) is sometimes used to stimulate testosterone production in men and ovulation induction in women. For men it acts in the same way as LH; stimulating the Leydig cells in the testes to produce testosterone. Common trade names for hCG products include Pregnyl, Follutein, Profasi, or Choragon. Some men with KS or HH take hCG solely for testosterone production.
Human menopausal gonadotrophin (hMG) is used to stimulate sperm production in men and for multiple egg production and ovulation induction in women. It contains a mixture of both LH and FSH. In men the FSH acts on the sperm producing Sertoli cells in the testes. This can lead to testicular enlargement but can take anything from 6 months to 2 years for an adequate level of sperm production to be achieved. Common trade names for hMG products include Menopur, Menogon, Repronex, or Pergonal.
Purified forms of FSH are also available and are sometimes used with hCG instead of using hMG.
Females with KS / HH would normally require both hCG and FSH in order to achieve fertility. Other cases of female infertility can be treated with just FSH but females (and most males) with KS / CHH would require the use of both forms of gonadotropin injection.
Injections can be intramuscular but are normally taken just underneath the skin (subcutaneous) and are normally taken two or three times a week.
For both men and women, an alternative method (but not widely available), is the use of an infusion pump to provide GnRH (or LHRH) in pulsatile doses throughout the day. This stimulates the pituitary gland to release natural LH and FSH in order to activate testes or ovaries. The use of Kisspeptin delivered in the same pulsatile manner is also under evaluation as a possible treatment for fertility induction.
Although there are no approved pharmaceuticals for addressing female sexual disorders, several are under investigation for their effectiveness. A vacuum device is the only approved medical device for arousal and orgasm disorders. It is designed to increase blood flow to the clitoris and external genitalia. Women experiencing pain with intercourse are often prescribed pain relievers or desensitizing agents. Others are prescribed lubricants and/or hormone therapy. Many patients with female sexual dysfunction are often also referred to a counselor or therapist for psychosocial counseling.
Patients with Leydig cell hypoplasia may be treated with hormone replacement therapy (i.e., with androgens), which will result in normal sexual development and the resolution of most symptoms. In the case of 46,XY (genetically "male") individuals who are phenotypically female and/or identify as the female gender, estrogens should be given instead. Surgical correction of the genitals in 46,XY males may be required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well.
Surgery (orchiopexy) to retrieve the testes and position them in the scrotum is the primary treatment. Occasionally they are unsalvageable if located high in the retroperitoneum. During this surgery, the uterus is usually removed and attempts made to dissect away Müllerian tissue from the vas deferens and epididymis to improve the chance of fertility. If the person has male gender identity himself and the testes cannot be retrieved, testosterone replacement will be usually necessary at puberty should the affected individual choose to pursue medical attention. Lately, laparoscopic hysterectomy is offered to patients as a solution to both improve the chances of fertility and to prevent the occurrences of neoplastic tissue formation.
Estrogens are responsible for the maintenance of collagen, elastic fibers, and vasoculature of the urogenital tract, all of which are important in maintaining vaginal structure and functional integrity; they are also important for maintaining vaginal pH and moisture levels, both of which aid in keeping the tissues lubricated and protected. Prolonged estrogen deficiency leads to atrophy, fibrosis, and reduced blood flow to the urogenital tract, which is what causes menopausal symptoms such as vaginal dryness and pain related to sexual activity and/or intercourse. It has been consistently demonstrated that women with lower sexual functioning have lower estradiol levels.
Androgen therapy for hypoactive sexual desire disorder (HSDD) has a small benefit but its safety is not known. It is not approved as a treatment in the United States. If used it is more common among women who have had an oophorectomy or who are in a postmenopausal state. However, like most treatments, this is also controversial. One study found that after a 24-week trial, those women taking androgens had higher scores of sexual desire compared to a placebo group. As with all pharmacological drugs, there are side effects in using androgens, which include hirutism, acne, ploycythaemia, increased high-density lipoproteins, cardiovascular risks, and endometrial hyperplasia is a possibility in women without hysterectomy. Alternative treatments include topical estrogen creams and gels can be applied to the vulva or vagina area to treat vaginal dryness and atrophy.
Medical treatment of gynecomastia is most effective when done within the first two years after the start of male breast enlargement. Selective estrogen receptor modulators (SERMs) such as tamoxifen, raloxifene, and clomifene may be beneficial in the treatment of gynecomastia but are not approved by the Food and Drug Administration for use in gynecomastia. Clomifene seems to be less effective than tamoxifen or raloxifene. Tamoxifen may be used for painful gynecomastia in adults. Aromatase inhibitors (AIs) such as anastrozole have been used off-label for cases of gynecomastia occurring during puberty but are less effective than SERMs. A few cases of gynecomastia caused by the rare disorders aromatase excess syndrome and Peutz–Jeghers syndrome have responded to treatment with AIs such as anastrozole. Androgens/anabolic steroids may be effective for gynecomastia. Testosterone itself may not be suitable to treat gynecomastia as it can be aromatized into estradiol, but non-aromatizable androgens like topical androstanolone (dihydrotestosterone) can be useful.
Radiation therapy and tamoxifen have been shown to help prevent gynecomastia and breast pain from developing in prostate cancer patients who will be receiving androgen deprivation therapy. The efficacy of these treatments is limited once gynecomastia has occurred and are therefore most effective when used prophylactically.
Many insurance companies deny coverage for surgery for gynecomastia treatment or male breast reduction on the basis that it is a cosmetic procedure.
The presence of round headed sperm in a semen analysis sample confirms the diagnosis of globozoospermia. The lack of acrosome can be ascertained by a technique known as immunofluorescence.
Until 1995, the only options for people with globozoospermia who wished to conceive were adoption or sperm donation. With the advancement of assisted reproductive techniques (ART) it is now possible for those with globozoospermia to conceive using their own sperm. The main technique used is intracytoplasmic sperm injection (ICSI) where fertilisation is achieved by a single sperm being injected into the egg. Some studies have shown it is possible for a viable embryo to be created with this technique alone, however others have found it necessary to also use calcium ionophore treatment for fertilisation to be successful. Calcium ionophore treatment is used to artificially activate the oocyte. This treatment may be necessary as globozoospermic sperm can be less likely to activate the oocyte, an important stage in fertilisation.
The treatment options currently available focus on overcoming the prognosis of infertility which is associated with globozoospermia. So far there are no treatment options to prevent or cure globozoospermia.
Treatment of hyperandrogenism varies with the underlying condition that causes it. As a hormonal symptom of polycystic ovary syndrome, menopause, and other endocrine disorders, it is primarily treated as a symptom of these disorders. Systemically, it is treated with antiandrogens such as cyproterone acetate, flutamide and spironolactone to control the androgen levels in the patient's body. For Hyperandrogenism caused by Late-Onset Congenital Adrenal Hyperplasia (CAH), treatment is primarily focused on providing the patient with Glucocorticoids to combat the low cortisol production and the corresponding increase in androgens caused by the swelling of the Adrenal Glands. Oestrogen-based oral contraceptives are used to treat both CAH and PCOS caused hyperandrogenism. These hormonal treatments have been found to reduce the androgen excess and suppress adrenal androgen production and cause a significant decrease in hirsutism.
Hyperandrogenism is often managed symptomatically. Hirsutism and acne both respond well to the hormonal treatments described above, with 60-100% reporting an improvement in hirsutism. Androgenic alopecia however, does not show a significant improvement with hormonal treatments and requires other treatments, such as hair transplantation.
Acquired female infertility may be prevented through identified interventions:
- "Maintaining a healthy lifestyle." Excessive exercise, consumption of caffeine and alcohol, and smoking have all been associated with decreased fertility. Eating a well-balanced, nutritious diet, with plenty of fresh fruits and vegetables, and maintaining a normal weight, on the other hand, have been associated with better fertility prospects.
- "Treating or preventing existing diseases." Identifying and controlling chronic diseases such as diabetes and hypothyroidism increases fertility prospects. Lifelong practice of safer sex reduces the likelihood that sexually transmitted diseases will impair fertility; obtaining prompt treatment for sexually transmitted diseases reduces the likelihood that such infections will do significant damage. Regular physical examinations (including pap smears) help detect early signs of infections or abnormalities.
- "Not delaying parenthood." Fertility does not ultimately cease before menopause, but it starts declining after age 27 and drops at a somewhat greater rate after age 35. Women whose biological mothers had unusual or abnormal issues related to conceiving may be at particular risk for some conditions, such as premature menopause, that can be mitigated by not delaying parenthood.
- "Egg freezing." A woman can freeze her eggs preserve her fertility. By using egg freezing while in the peak reproductive years, a woman's oocytes are cryogenically frozen and ready for her use later in life, reducing her chances of female infertility.
The primary goals of hormone replacement are to protect from adrenal insufficiency and to suppress the excessive adrenal androgen production.
Glucocorticoids are provided to all children and adults with all but the mildest and latest-onset forms of CAH. The glucocorticoids provide a reliable substitute for cortisol, thereby reducing ACTH levels. Reducing ACTH also reduces the stimulus for continued hyperplasia and overproduction of androgens. In other words, glucocorticoid replacement is the primary method of reducing the excessive adrenal androgen production in both sexes. A number of glucocorticoids are available for therapeutic use. Hydrocortisone or liquid prednisolone is preferred in infancy and childhood, and prednisone or dexamethasone are often more convenient for adults.
The glucocorticoid dose is typically started at the low end of physiologic replacement (6–12 mg/m²) but is adjusted throughout childhood to prevent both growth suppression from too much glucocorticoid and androgen escape from too little. Serum levels of 17α-hydroxyprogesterone, testosterone, androstenedione, and other adrenal steroids are followed for additional information, but may not be entirely normalized even with optimal treatment. ("See Glucocorticoid for more on this topic.")
Mineralocorticoids are replaced in all infants with salt-wasting and in most patients with elevated renin levels. Fludrocortisone is the only pharmaceutically available mineralocorticoid and is usually used in doses of 0.05 to 2 mg daily. Electrolytes, renin, and blood pressure levels are followed to optimize the dose.
SERMs are a category of drugs, either synthetically produced or derived from a botanical source, that act selectively as agonists or antagonists on the estrogen receptors throughout the body. The most commonly prescribed SERMs are raloxifene and tamoxifen. Raloxifene exhibits oestrogen agonist activity on bone and lipids, and antagonist activity on breast and the endometrium. Tamoxifen is in widespread use for treatment of hormone sensitive breast cancer. Raloxifene prevents vertebral fractures in postmenopausal, osteoporotic women and reduces the risk of invasive breast cancer.
Upon diagnosis, estrogen and progesterone therapy is typically commenced, promoting the development of female characteristics.
The consequences of streak gonads to a person with Swyer syndrome:
1. Gonads cannot make estrogen, so the breasts will not develop and the uterus will not grow and menstruate until estrogen is administered. This is often given transdermally.
2. Gonads cannot make progesterone, so menstrual periods will not be predictable until progestin is administered, usually as a pill.
3. Gonads cannot produce eggs so conceiving children naturally is not possible. A woman with a uterus and ovaries but without female gamete is able to become pregnant by implantation of another woman's fertilized egg (embryo transfer).
4. Streak gonads with Y chromosome-containing cells have a high likelihood of developing cancer, especially gonadoblastoma. Streak gonads are usually removed within a year or so of diagnosis since the cancer can begin during infancy.
Some of the SSRIs and SNRIs appear to provide some relief. Low dose paroxetine has been FDA-approved for hot moderate-to-severe vasomotor symptoms associated with menopause. They may, however, be associated with sleeping problems.
Gabapentin or clonidine may help but does not work as well as hormone therapy. Clonidine may be associated with constipation and sleeping problems.
Even after diagnosis and initiation of treatment, a small percentage of children and adults with infancy or childhood onset CAH die of adrenal crisis. Deaths from this are entirely avoidable if the child and family understand that the daily glucocorticoids cannot be allowed to be interrupted by an illness. When a person is well, missing a dose, or even several doses, may produce little in the way of immediate symptoms. However, glucocorticoid needs are increased during illness and stress, and missed doses during an illness such as the "flu" (or viral gastroenteritis) can lead within hours to reduced blood pressure, shock, and death.
To prevent this, all persons taking replacement glucocorticoids are taught to increase their doses in the event of illness, surgery, severe injury, or severe exhaustion. More importantly, they are taught that vomiting warrants an injection within hours of hydrocortisone (e.g., SoluCortef) or other glucocorticoid. This recommendation applies to both children and adults. Because young children are more susceptible to vomiting illnesses than adults, pediatric endocrinologists usually teach parents how to give hydrocortisone injections.
As an additional precaution, persons with adrenal insufficiency are advised to wear a medical identification tag or carry a wallet card to alert those who may be providing emergency medical care of the urgent need for glucocorticoids.
Since risk factors are not known and vary among individuals with hyperandrogegism, there is no sure method to prevent this medical condition. Therefore, more longterm studies are needed first to find a cause for the condition before being able to find a sufficient method of prevention.
However, there are a few things that can help avoid long-term medical issues related to hyperandrogenism like PCOS. Getting checked by a medical professional for hyperandrogenism; especially if one has a family history of the condition, irregular periods, or diabetes; can be beneficial. Watching your weight and diet is also important in decreasing your chances, especially in obese females, since continued exercise and maintaining a healthy diet leads to an improved menstrual cycle as well as to decreased insulin levels and androgen concentrations.
If a child is healthy but simply late, reassurance and prediction based on the bone age can be provided. No other intervention is usually necessary. In more extreme cases of delay, or cases where the delay is more extremely distressing to the child, a low dose of testosterone or estrogen for a few months may bring the first reassuring changes of normal puberty.
If the delay is due to systemic disease or undernutrition, the therapeutic intervention is likely to focus mainly on those conditions. In patients with coeliac disease, an early diagnosis and the establishment of a gluten-free diet prevents long-term complications and allows restore normal maturation.
If it becomes clear that there is a permanent defect of the reproductive system, treatment usually involves replacement of the appropriate hormones (testosterone/dihydrotestosterone for boys, estradiol and progesterone for girls).
Pubertal delay due to gonadotropin deficiency is treated with testosterone replacement or with HCG.
Growth hormone is another option that has been described.
Subnormal vitamin A intake is one of the aetiological factors in delayed pubertal maturation. Supplementation of both vitamin A and iron to normal constitutionally delayed children with subnormal vitamin A intake is as efficacious as hormonal therapy in the induction of growth and puberty.