Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are a number of different treatments to deal with TSPK. Symptoms may disappear if untreated, but treatment may decrease both the healing time and the chances of remission.
- PRK laser eye surgery may cure this disease (NOTE: A full clinical study has not been done, but a case study of one person was reported in 2002 PRK-pTK as a treatment).
- Artificial tear eye-drops or ointments may be a suitable treatment for mild cases.
- Low-dosage steroidal eye-drops, such as prednisone, fluorometholone, loteprednol (Lotemax 0.5%) or rimexolone. Steroidal drops should be used with caution and the eye pressure should be regularly checked during treatment.
- Soft contact lenses.
- Ciclosporin is an experimental treatment for TSPK. It is usually used during transplants as it reduces the immune system response.
- Tacrolimus (Protopic 0.03% ointment) is also an experimental treatment.
- Laser eye treatment.
- Amniotic membrane (Case Study)
Because SO is so rarely encountered following eye injury, even when the injured eye is retained, the first choice of treatment may not be enucleation or evisceration, especially if there is a chance that the injured eye may regain some function. Additionally, with current advanced surgical techniques, many eyes once considered nonviable now have a fair prognosis.
However, only if the injured eye has completely lost its vision and has no potential for any visual recovery, prevention of SO is done by enucleation of the injured eye preferably within the first 2 weeks of injury. Evisceration—the removal of the contents of the globe while leaving the sclera and extraocular muscles intact—is easier to perform, offers long-term orbital stability, and is more aesthetically pleasing, i.e., a greater measure of movement of the prosthesis and thus a more natural appearance. There is concern, however, that evisceration may lead to a higher incidence of SO compared to enucleation. Several retrospective studies involving over 3000 eviscerations, however, have failed to identify a single case of SO.
Once SO is developed, Immunosuppressive therapy is the mainstay of treatment. When initiated promptly following injury, it is effective in controlling the inflammation and improving the prognosis. Mild cases may be treated with local application of corticosteroids and pupillary dilators. More severe or progressive cases require high-dose systemic corticosteroids for months to years. Patients who become resistant to corticosteroids or develop side effects of long-term corticosteroid therapy (osteoporosis and pathologic fractures, mental status changes, etc.), may be candidates for therapy with chlorambucil, cyclophosphamide, or ciclosporin.
Intraocular pressure can be lowered with medication, usually eye drops. Several classes of medications are used to treat glaucoma, with several medications in each class.
Each of these medicines may have local and systemic side effects. Adherence to medication protocol can be confusing and expensive; if side effects occur, the patient must be willing either to tolerate them or to communicate with the treating physician to improve the drug regimen. Initially, glaucoma drops may reasonably be started in either one or in both eyes. Wiping the eye with an absorbent pad after the administration of eye drops may result in fewer adverse effects, like the growth of eyelashes and hyperpigmentation in the eyelid.
Poor compliance with medications and follow-up visits is a major reason for vision loss in glaucoma patients. A 2003 study of patients in an HMO found half failed to fill their prescriptions the first time, and one-fourth failed to refill their prescriptions a second time. Patient education and communication must be ongoing to sustain successful treatment plans for this lifelong disease with no early symptoms.
The possible neuroprotective effects of various topical and systemic medications are also being investigated.
- Prostaglandin analogs, such as latanoprost, bimatoprost and travoprost, increase uveoscleral outflow of aqueous humor. Bimatoprost also increases trabecular outflow.
- Topical beta-adrenergic receptor antagonists, such as timolol, levobunolol, and betaxolol, decrease aqueous humor production by the epithelium of the ciliary body.
- Alpha2-adrenergic agonists, such as brimonidine and apraclonidine, work by a dual mechanism, decreasing aqueous humor production and increasing uveoscleral outflow.
- Less-selective alpha agonists, such as epinephrine, decrease aqueous humor production through vasoconstriction of ciliary body blood vessels, useful only in open-angle glaucoma. Epinephrine's mydriatic effect, however, renders it unsuitable for closed-angle glaucoma due to further narrowing of the uveoscleral outflow (i.e. further closure of trabecular meshwork, which is responsible for absorption of aqueous humor).
- Miotic agents (parasympathomimetics), such as pilocarpine, work by contraction of the ciliary muscle, opening the trabecular meshwork and allowing increased outflow of the aqueous humour. Echothiophate, an acetylcholinesterase inhibitor, is used in chronic glaucoma.
- Carbonic anhydrase inhibitors, such as dorzolamide, brinzolamide, and acetazolamide, lower secretion of aqueous humor by inhibiting carbonic anhydrase in the ciliary body.
Uveitis is typically treated with glucocorticoid steroids, either as topical eye drops (prednisolone acetate) or as oral therapy. Prior to the administration of corticosteroids, corneal ulcers must be ruled out. This is typically done using a fluoresence dye test. In addition to corticosteroids, topical cycloplegics, such as atropine or homatropine, may be used. Successful treatment of active uveitis increases T-regulatory cells in the eye, which likely contributes to disease regression.
In some cases an injection of posterior subtenon triamcinolone acetate may also be given to reduce the swelling of the eye.
Antimetabolite medications, such as methotrexate are often used for recalcitrant or more aggressive cases of uveitis. Experimental treatments with Infliximab or other anti-TNF infusions may prove helpful.
The anti-diabetic drug metformin is reported to inhibit the process that causes the inflammation in uveitis.
In the case of herpetic uveitis, anti-viral medications, such as valaciclovir or aciclovir, may be administered to treat the causative viral infection.
While PEX itself is untreatable as of 2011, it is possible for doctors to minimize the damage to vision and to the optic nerves by the same medical techniques used to prevent glaucoma.
- Eyedrops. This is usually the first treatment method. Eyedrops can help reduce intraocular pressure within the eye. The medications within the eyedrops can include beta blockers (such as levobunolol or timolol) which slow the production of the aqueous humor. And other medications can increase its outflow, such as prostaglandin analogues (e.g. latanoprost). And these medicines can be used in various combinations. In most cases of glaucoma, eyedrops alone will suffice to solve the problem.
- Laser surgery. A further treatment is a type of laser therapy known as trabeculoplasty in which a high-energy laser beam is pointed at the trabecular meshwork to cause it to "remodel and open" and improve the outflows of the aqueous humor. These can be done as an outpatient procedure and take less than twenty minutes. One report suggests this procedure is usually effective.
- Eye surgery. Surgery is the treatment method of last resort if the other methods have not worked. It is usually effective at preventing glaucoma. Eye surgery on PEX patients can be subject to medical complications if the fibers which hold the lens have become weakened because of a buildup from the flakes; if the lens-holding fibers have weakened, then the lens may become loose, and complications from eye surgery may result. In such cases, it is recommended that surgeons act quickly to repair the phacodonesis before the lenses have dropped. A surgeon cuts an opening in the white portion of the eye known as the sclera, and removes a tiny area of the trabecular meshwork which enables the aqueous humor to discharge. This lowers the internal pressure within the eye and lessens the chance of future damage to the optic nerve. Cases with pseudophacodonesis and dislocated IOL have been increasing in number, according to one report. In cataract surgery, complications resulting from PEX include capsular rupture and vitreous loss.
- Drug therapy. There are speculations that if genetics plays a role in PEX, and if the specific genes involved can be identified, that possibly drugs can be developed to counteract these mutations or their effects. But such drugs have not been developed as of 2011.
Patients should continue to have regular eye examinations so that physicians can monitor pressure levels and check whether medicines are working.
Currently treatment of ARN consists of antiviral therapy administered orally. Typical antiviral agents used include famciclovir, valganciclovir, and valacyclovir. While on these medications, a patient's kidney function should be watched. Some physician's also may administer the antiviral agents via intravitreal delivery. Though controversial, some physicians administer steroids (prednisone) and antithrombotic therapy (aspirin).
Some commonly admistered antiviral agents are as follows:
- Acyclovir
- Famciclovir
- Valacyclovir
- Gancicilovir
- Valganciclovir
In very severe cases of necrotizing scleritis, eye surgery must be performed to repair damaged corneal tissue in the eye and preserve the patient's vision. For less severe cases, nonsteroidal anti-inflammatory drugs, such as ibuprofen, are prescribed for pain relief. Scleritis itself is treated with an oral medication containing corticosteroids and an eye solution. In some cases, antibiotics are prescribed. Simply using eye drops will not treat scleritis. In more aggressive cases of scleritis, chemotherapy (such as systemic immunosuppressive therapy with such drugs as cyclophosphamide or azathioprine) may be used to treat the disease. If not treated, scleritis can cause blindness.
Topical ciclosporin (topical ciclosporin A, tCSA) 0.05% ophthalmic emulsion is an immunosuppressant. The drug decreases surface inflammation. In a trial involving 1200 people, Restasis increased tear production in 15% of people, compared to 5% with placebo.
It should not be used while wearing contact lenses, during eye infections or in people with a history of herpes virus infections. Side effects include burning sensation (common), redness, discharge, watery eyes, eye pain, foreign body sensation, itching, stinging, and blurred vision. Long term use of ciclosporin at high doses is associated with an increased risk of cancer.
Cheaper generic alternatives are available in some countries.
Often, treatment is not necessary, because episcleritis is a self-limiting condition. Artificial tears may be used to help with irritation and discomfort. More severe cases can be treated with either topical corticosteroids or oral non-steroidal anti-inflammatory drugs.
Ketorolac, a topical NSAID, may be used, but it is not more effective than artificial tears and it causes more side effects.
Argon laser trabeculoplasty (ALT) may be used to treat open-angle glaucoma, but this is a temporary solution, not a cure. A 50-μm argon laser spot is aimed at the trabecular meshwork to stimulate the opening of the mesh to allow more outflow of aqueous fluid. Usually, half of the angle is treated at a time. Traditional laser trabeculoplasty uses a thermal argon laser in an argon laser trabeculoplasty procedure.
A newer type of laser trabeculoplasty uses a "cold" (nonthermal) laser to stimulate drainage in the trabecular meshwork. This newer procedure, selective laser trabeculoplasty (SLT), uses a 532-nm, frequency-doubled, Q-switched , which selectively targets melanin pigment in the trabecular meshwork cells. Studies show SLT is as effective as ALT at lowering eye pressure. In addition, SLT may be repeated three to four times, whereas ALT can usually be repeated only once.
Nd:YAG laser peripheral iridotomy (LPI) may be used in patients susceptible to or affected by angle closure glaucoma or pigment dispersion syndrome. During laser iridotomy, laser energy is used to make a small, full-thickness opening in the iris to equalize the pressure between the front and back of the iris, thus correcting any abnormal bulging of the iris. In people with narrow angles, this can uncover the trabecular meshwork. In some cases of intermittent or short-term angle closure, this may lower the eye pressure. Laser iridotomy reduces the risk of developing an attack of acute angle closure. In most cases, it also reduces the risk of developing chronic angle closure or of adhesions of the iris to the trabecular meshwork.
Diode laser cycloablation lowers IOP by reducing aqueous secretion by destroying secretory ciliary epithelium.
Chorioretinitis is usually treated with a combination of corticosteroids and antibiotics. However, if there is an underlying cause such as HIV, specific therapy can be started as well.
A 2012 Cochrane Review found weak evidence suggesting that ivermectin could result in reduced chorioretinal lesions in patients with onchocercal eye disease. More research is needed to support this finding.
Cryotherapy (freezing) or laser photocoagulation are occasionally used alone to wall off a small area of retinal detachment so that the detachment does not spread.
Inflammation occurring in response to tears film hypertonicity can be suppressed by mild topical steroids or with topical immunosuppressants such as ciclosporin (Restasis). Elevated levels of tear NGF can be decreased with 0.1% prednisolone.
Diquafosol, an agonist of the P2Y2 purinogenic receptor, is approved in Japan for managing dry eye disease by promoting tear secretion.
Lifitegrast is a new drug that was approved by the FDA for the treatment of the condition in 2016.
While there is no prevention for ARN, exposing a patient to antiviral agents in the earlier phases of the outbreak tend to decrease the duration of the active phase of the disease. Taking antiviral agents after the issue is resolved seems to lessen the chance of it spreading to the other eye.
Corneal collagen cross-linking is a developing treatment which aims to strengthen the cornea, however, according to a 2015 Cochrane review, there is insufficient evidence to determine if it is useful in keratoconus.
In 2016, the US Food and Drug Administration approved riboflavin ophthalmic solution and KXL system for crosslinking based on three 12-month clinical trials.
In early stages of keratoconus, glasses or soft contact lenses can suffice to correct for the mild astigmatism. As the condition progresses, these may no longer provide the person with a satisfactory degree of visual acuity, and most practitioners will move to manage the condition with rigid contact lenses, known as rigid, gas-permeable, (RGP) lenses. RGP lenses provide a good level of visual correction, but do not arrest progression of the condition.
In people with keratoconus, rigid contact lenses improve vision by means of tear fluid filling the gap between the irregular corneal surface and the smooth regular inner surface of the lens, thereby creating the effect of a smoother cornea. Many specialized types of contact lenses have been developed for keratoconus, and affected people may seek out both doctors specialized in conditions of the cornea, and contact lens fitters who have experience managing people with keratoconus. The irregular cone presents a challenge and the fitter will endeavor to produce a lens with the optimal contact, stability and steepness. Some trial-and-error fitting may prove necessary.
In the early stages, there are a few treatment options. Laser surgery or cryotherapy (freezing) can be used to destroy the abnormal blood vessels, thus halting progression of the disease. However, if the leaking blood vessels are clustered around the optic nerve, this treatment is not recommended as accidental damage to the nerve itself can result in permanent blindness. Although Coats' disease tends to progress to visual loss, it may stop progressing on its own, either temporarily or permanently. Cases have been documented in which the condition even reverses itself. However, once total retinal detachment occurs, sight loss is permanent in most cases. Removal of the eye (enucleation) is an option if pain or further complications arise.
Early diagnosis, targeted treatment according to the severity of the disease, and regular monitoring of patients with neurotrophic keratitis are critical to prevent damage progression and the occurrence of corneal ulcers, especially considering that the deterioration of the condition is often poorly symptomatic.
The purpose of treatment is to prevent the progression of corneal damage and promote healing of the corneal epithelium. The treatment should always be personalized according to the severity of the disease. Conservative treatment is typically the best option.
In stage I, the least serious, treatment consists of the administration of preservative-free artificial tears several times a day in order to lubricate and protect the ocular surface, improving the quality of the epithelium and preventing the possible loss of transparency of the cornea.
In stage II, treatment should be aimed at preventing the development of corneal ulcers and promoting the healing of epithelial lesions. In addition to artificial tears, topical antibiotics may also be prescribed to prevent possible infections. Patients should be monitored very carefully since, being the disease poorly symptomatic, the corneal damage may progress without the patient noticing any worsening of the symptoms. Corneal contact lenses can also be used in this stage of the disease, for their protective action to improve corneal healing.
In the most severe forms (stage III), it is necessary to stop the progression towards corneal perforation: in these cases, a possible surgical treatment option is tarsorrhaphy, i.e. the temporary or permanent closure of the eyelids by means of sutures or botulinum toxin injection. This protects the cornea, although the aesthetic result of these procedures may be difficult to accept for patients. Similarly, a procedure that entails the creation of a conjunctival flap has been shown to be effective in the treatment of chronic corneal ulcers with or without corneal perforation. In addition, another viable therapeutic option is amniotic membrane graft, which has recently been shown to play a role in stimulating corneal epithelium healing and in reducing vascularisation and inflammation of the ocular surface . Other approaches used in severe forms include the administration of autologous serum eye drops.
Research studies have focused on developing novel treatments for neurotrophic keratitis, and several polypeptides, growth factors and neuromediators have been proposed[25]. Studies were conducted on topical treatment with Substance P and IGF-1 (insulin-like growth factor-1), demonstrating an effect on epithelial healing[26]. Nerve Growth Factor (NGF) play a role in the epithelial proliferation and differentiation and in the survival of corneal sensory nerves. Topical treatment with murine NGF showed to promote recovery of epithelial integrity and corneal sensitivity in NK patients[27]. Recently, a recombinant human nerve growth factor eye drop formulation has been developed for clinical use[28].
Cenegermin, a recombinant form of human NGF, has recently been approved in Europe in an eye drop formulation for neurotrophic keratitis.
Scleral buckle surgery is an established treatment in which the eye surgeon sews one or more silicone bands (or tyres) to the sclera (the white outer coat of the eyeball). The bands push the wall of the eye inward against the retinal hole, closing the break or reducing fluid flow through it and reducing the effect of vitreous traction thereby allowing the retina to re-attach. Cryotherapy (freezing) is applied around retinal breaks prior to placing the buckle. Often subretinal fluid is drained as part of the buckling procedure. The buckle remains in situ. The most common side effect of a scleral operation is myopic shift. That is, the operated eye will be more short sighted after the operation. Radial scleral buckle is indicated for U-shaped tears or Fishmouth tears, and posterior breaks. Circumferential scleral buckle is indicated for multiple breaks, anterior breaks and wide breaks. Encircling buckles are indicated for breaks covering more than 2 quadrants of retinal area, lattice degeneration located on more than 2 quadrant of retinal area, undetectable breaks, and proliferative vitreous retinopathy.
One treatment used is polyhexamethylene biguanide, PHMB.
Propamidine isethionate has also shown some effectiveness.
Another possible agent is chlorhexidine.
Keratoplasty may sometimes be required.
A combined regimen of propamidine, miconazole nitrate, and neomycin has also been suggested.
A recent Cochrane review found one study that compared the effectiveness of chlorhexidine eye drops against PHMB eye drops, for eyes with "Acanthamoeba" keratitis. The differences between treatments were not statistically significant; the review found that 86% of eyes treated with chlorhexidine eye drops reported a resolution of infection, compared to 78% of eyes treated with PHMB eye drops. The study also found that 71% of eyes treated with chlorhexidine eye drops reported improved visual acuity after treatment, compared to 57% of eyes in the PMGB group; these results were also not significant.
Treatment includes the use of protective eye glasses. A number of surgical options are also available.
Further progression of the disease usually leads to a need for corneal transplantation because of extreme thinning of the cornea. Primarily, large size penetrating keratoplasty has been advocated.
Recent additions of techniques specifically for keratoglobus include the "tuck procedure", whereby a 12 mm corneo-scleral donor graft is taken and trimmed at its outer edges. A host pocket is formed at the limbal margin and the donor tissue is "tucked" into the host pocket.
The acute uveitis phase of VKH is usually responsive to high-dose oral corticosteroids; parenteral administration is usually not required. However, ocular complications may require an subtenon or intravitreous injection of corticosteroids or bevacizumab. In refractory situations, other immunosuppressives such as cyclosporine, or tacrolimus, antimetabolites (azathioprine, mycophenolate mofetil or methotrexate), or biological agents such as intravenous immunoglobulins (IVIG) or infliximab may be needed.
The prognosis is generally good for those who receive prompt diagnosis and treatment, but serious complication including cataracts, glaucoma, band keratopathy, macular edema and permanent vision loss may result if left untreated. The type of uveitis, as well as its severity, duration, and responsiveness to treatment or any associated illnesses, all factor into the outlook.
Currently, there is not a treatment option for regaining vision by developing a new eye. There are, however, cosmetic options so the absence of the eye is not as noticeable. Typically, the child will need to go to a prosthetic specialist to have conformers fitted into the eye. Conformers are made of clear plastic and are fitted into the socket to promote socket growth and expansion. As the child's face grows and develops, the conformer will need to be changed. An expander may also be needed in anophthalmia to expand the socket that is present. The conformer is changed every few weeks the first two years of life. After that, a painted prosthetic eye can be fitted for the child's socket. The prosthetic eye can be cleaned with mild baby soap and water. Rubbing alcohol should be avoided because it may damage the prosthetic eye. Children need to be checked regularly to ensure the fit and size is appropriate.
Retinal haemorrhages, especially mild ones not associated with chronic disease, will normally resorb without treatment. Laser surgery is a treatment option which uses a laser beam to seal off damaged blood vessels in the retina. Anti-vascular endothelial growth factor (VEGF) drugs like Avastin and Lucentis have also been shown to repair retinal haemorrhaging in diabetic patients and patients with haemorrhages associated with new vessel growth.