Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is currently no specific treatment for the virus. A vaccine is available, but only experimentally. It has not been released to the public due to the risk it poses to already exposed birds.
Therapeutic intervention is limited to treating secondary infections. The individual bird can sometimes recover, but this is rare. If only the feathers are affected and the bird suffers no other symptoms, it can usually experience an acceptable quality of life. But if the bird's beak or nails are affected, veterinarians will recommend euthanasia.
The management of the disease lies thus mostly in prevention. Every new bird that enters a pen with other birds should be quarantined first and be tested for BFDV. Birds which are known carriers should not be introduced into new pens, especially not if those contain young birds.
Supportive care must be provided to animals that have clinical signs. Subcutaneous or intravenous fluids are given to dehydrated animals, and severely anemic dogs may require a blood transfusion. Treatment for ehrlichiosis involves the use of antibiotics such as tetracycline or doxycycline for a period of at least six to eight weeks; response to the drugs may take one month. Treatment with macrolide antibiotics like clarithromycin and azithromycin is being studied. In addition, steroids may be indicated in severe cases in which the level of platelets is so low that the condition is life-threatening.
Tick control is the most effective method of prevention, but tetracycline at a lower dose can be given daily for 200 days during the tick season in endemic regions.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine, plus various combinations).
Given that avian reovirus infections are widespread, the viruses are relatively resistant outside the host, and that vertical and horizontal transmission occurs, eradicating avian reovirus infection in commercial chicken flocks is very unlikely. In addition, absence of detectable seroconversion and failure to detect virus in cloacal swabs are unreliable indicators of resisting infection, or transmission via the egg. Thus, the most proactive and successful approach to controlling this disease is through vaccination. Since chicks are more prone to being detrimentally affected by the disease right after hatching, vaccine protocols that use live and killed vaccines are designed to provide protection during the very early stages of life. This approach has been accomplished through active immunity after early vaccination and a live vaccine or passive immunity from maternal antibodies followed with vaccination of the breeder hens. Currently, efforts toward administering inactivated or live vaccines to breeding stock to allow passive immunity to the offspring via the yolk are being taken.
Because Carrion's disease is often comorbid with "Salmonella" infections, chloramphenicol has historically been the treatment of choice.
Fluoroquinolones (such as ciprofloxacin) or chloramphenicol in adults and chloramphenicol plus beta-lactams in children are the antibiotic regimens of choice during the acute phase of Carrion's disease. Chloramphenicol-resistant "B. bacilliformis" has been observed.
During the eruptive phase, in which chloramphenicol is not useful, azithromycin, erythromycin, and ciprofloxacin have been used successfully for treatment. Rifampin or macrolides are also used to treat both adults and children.
Because of the high rates of comorbid infections and conditions, multiple treatments are often required. These have included the use of corticosteroids for respiratory distress, red blood cell transfusions for anemia, pericardiectomies for pericardial tamponades, and other standard treatments.
Although infection of avian reovirus is spread worldwide, it is rarely the sole cause of a disease. For chickens, the most common manifestation of the disease is joint/limb lameness. Confirming infection of avian reovirus can be detected through an ELISA test by using and observing the expression of σC and σB proteins. However, isolating and identifying reoviruses from tissue samples is very time consuming. Isolation is most successfully attained through inoculation of material into chick embryo cultures or fertile chicken eggs. Inoculation of embryonic eggs through the yolk sac has shown that the virus usually kills the embryos within 5 or 6 days post inoculation. Analyzing the samples, the embryos appeared hemorrhagic and necrotic lesions on the liver were present. (Jones, Onunkwo, 1978). There have also been approaches to identify avian reoviruses molecularly by observing infected tissues with dot-blot hybridization, PCR, and a combination of PCR and RFLP. This combination allows for the reovirus strain to be typed.
Available treatment falls into two modalities: treating infections and boosting the immune system.
Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised. In the early 1950s Immunoglobulin(Ig) was used by doctors to treat patients with primary immunodeficiency through intramuscular injection. Ig replacement therapy are infusions that can be either subcutaneous or intravenously administrated, resulting in higher Ig levels for about three to four weeks, although this varies with each patient.
Psittacine beak and feather disease (PBFD) is a viral disease affecting all Old World and New World parrots. The causative virus–beak and feather disease virus (BFDV)—belongs to the taxonomic genus Circovirus, family Circoviridae. It attacks the feather follicles and the beak and claw matrices of the bird, causing progressive feather, claw and beak malformation and necrosis. In later stages of the disease, feather shaft constriction occurs, hampering development until eventually all feather growth stops. It occurs in an acutely fatal form and a chronic form.
Cracking and peeling of the outer layers of the claws and beak make tissues vulnerable to . Because the virus also affects the thymus and Bursa of Fabricius, slowing lymphocyte production, immunosuppression occurs and the bird becomes more vulnerable to secondary infections. Beak fractures and necrosis of the hard palate can prevent the bird from eating.
Prognosis depends greatly on the nature and severity of the condition. Some deficiencies cause early mortality (before age one), others with or even without treatment are lifelong conditions that cause little mortality or morbidity. Newer stem cell transplant technologies may lead to gene based treatments of
debilitating and fatal genetic immune deficiencies. Prognosis of acquired immune deficiencies depends on avoiding or treating the causative agent or
condition (like AIDS).
Pythiosis is suspected to be heavily underdiagnosed due to unfamiliarity with the disease, the rapid progression and morbidity, and the difficulty in making a diagnosis. Symptoms often appear once the disease has progressed to the point where treatment are less effective.
As the organism is neither a bacterium, virus, nor fungus, routine tests often fail to diagnose it. In cytology and histology, the organism does not stain using Geisma, H&E, or Diff-Quick. GMS staining is required to identify the hyphae in slides. Additionally, the symptoms are usually nonspecific and the disease is not normally included in a differential diagnosis.
Biopsies of infected tissues are known to be difficult to culture, but can help narrow the diagnosis to several different organisms. A definite diagnosis is confirmed using ELISA testing of serum for pythiosis antibodies, or by PCR testing of infected tissues or cultures.
Due to the poor efficacy of single treatments, pythiosis infections are often treated using a variety of different treatments, all with varying success. Most successful treatments include surgery, immunotherapy, and chemotherapy.
Aggressive surgical resection is the treatment of choice for pythiosis. Because it provides the best opportunity for cure, complete excision of infected tissue should be pursued whenever possible. When cutaneous lesions are limited to a single distal extremity, amputation is often recommended. In animals with gastrointestinal pythiosis, segmental lesions should be resected with 5-cm margins whenever possible. Unfortunately, surgical excision of tissue and amputation do not guarantee complete success and lesions can reappear. So, surgery is often followed by other treatments.
An immunotherapy product derived from antigens of "P. insidiosum" has been used successfully to treat pythiosis.
Case reports indicate the use of the following chemotherapy treatments with varying success: potassium iodide, amphotericin B, terbinafine, itraconazole, fluconazole, ketoconazole, natamycin, posaconazole, voriconazole, prednisone, flucytosine, and liposomal nystatin.
The clinical symptoms of bartonellosis are pleomorphic and some patients from endemic areas may be asymptomatic. The two classical clinical presentations are the acute phase and the chronic phase, corresponding to the two different host cell types invaded by the bacterium (red blood cells and endothelial cells). An individual can be affected by either or both phases.
There is no standard therapy for multicentric Castleman disease. Treatment modalities change based on HHV-8 status, so it is essential to determine HHV-8 status before beginning treatment. For HHV-8-associated MCD the following treatments have been used: rituximab, antiviral medications such as ganciclovir, and chemotherapy.
Treatment with the antiherpesvirus medication ganciclovir or the anti-CD20 B cell monoclonal antibody, rituximab, may markedly improve outcomes. These medications target and kill B cells via the B cell specific CD20 marker. Since B cells are required for the production of antibodies, the body's immune response is weakened whilst on treatment and the risk of further viral or bacterial infection is increased. Due to the uncommon nature of the condition there are not many large scale research studies from which standardized approaches to therapy may be drawn, and the extant case studies of individuals or small cohorts should be read with caution. As with many diseases, the patient's age, physical state and previous medical history with respect to infections may impact the disease progression and outcome.
Currently, there is no cure for Urbach–Wiethe disease although there are some ways to individually treat many of its symptoms. There has been some success with oral dimethyl sulfoxide (DMSO) and intralesional heparin, but this is not true in all cases. D-penicillamine has also shown promise, but has yet to have been used extensively. There are also some reports of patients being treated with etretinate, a drug typically prescribed to treat psoriasis. In some cases, calcifications in the brain can lead to abnormal electrical activity among neurons. Some patients are given anti-seizure medication to help deal with these abnormalities. Tracheostomy is often used to relieve upper respiratory tract infections. Carbon dioxide laser surgery of thickened vocal cords and beaded eyelid papules have improved these symptoms for patients. The discovery of the mutations of the ECM1 gene has opened the possibility of gene therapy or a recombinant EMC1 protein for Urbach–Wiethe disease treatment, but neither of these two options are currently available.
Due to the lack of knowledge around the underlying mechanism of MAP, an effective treatment method has not been developed. Treatment for this condition is symptomatic. However, several treatment methods have been tested and are still being developed as more information regarding the condition is found. Fibrinolytic and immunosuppresive therapeutic regimens were tested and found to be mostly unsuccessful as treatment methods.
After treating conditions comorbid with Degos disease, physicians have recently found improvement in symptoms with the use of eculizumab and treprostinil. Discovered by dermatopathologist, Cynthia Magro, response to eculizumab is often immediate and dramatic, but has been of limited duration and is expensive, needing to be infused every 14 days. Treprostinil use has been reported to result in clearing of gastrointestinal and central nervous system findings as well as clearing of cutaneous lesions, but reports are limited. Treprostinil may be more effective than other vasodilators because it may also increase the population of circulating endothelial cells, allowing angiogenesis.
There is no cure for GSS, nor is there any known treatment to slow the progression of the disease. However, therapies and medication are aimed at treating or slowing down the effects of the symptoms. Their goal is to try to improve the patient's quality of life as much as possible. Despite there being no cure for GSS, it is possible to undergo testing for the presence of the underlying genetic mutation. Testing for GSS involves a blood and DNA examination in order to attempt to detect the mutated gene at certain codons. If the genetic mutation is present, the patient will eventually be afflicted by GSS, and, due to the genetic nature of the disease, the offspring of the patient are predisposed to a higher risk of inheriting the mutation.
For HHV-8-negative MCD (idiopathic MCD), the following treatments have been used: corticosteroids, rituximab, monoclonal antibodies against IL-6 such as tocilizumab and siltuximab, and the immunomodulator thalidomide.
Prior to 1996 MCD carried a poor prognosis of about 2 years, due to autoimmune hemolytic anemia and non-Hodgkin's lymphoma which may arise as a result of proliferation of infected cells. The timing of diagnosis, with particular attention to the difficulty of determining the cause of B symptoms without a CT scan and lymph node biopsy, may have a significant impact on the prognosis and risk of death. Left untreated, MCD usually gets worse and becomes increasingly difficult and unresponsive to current treatment regimens.
Siltuximab prevents it from binding to the IL-6 receptor, was approved by the U.S. Food and Drug Administration for the treatment of multicentric Castleman disease on April 23, 2014. Preliminary data suggest that treatment siltuximab may achieve tumour and symptomatic response in 34% of patients with MCD.
Other treatments for multicentric Castleman disease include the following:
- Corticosteroids
- Chemotherapy
- Thalidomide
Mild cases usually do not require treatment and will go away after a few days in healthy people. In cases where symptoms persist or when it is more severe, specific treatments based on the initial cause may be required.
In cases where diarrhoea is present, replenishing fluids lost is recommended, and in cases with prolonged or severe diarrhoea which persists, intravenous rehydration therapy or antibiotics may be required. A simple oral rehydration therapy (ORS) can be made by dissolving one teaspoon of salt, eight teaspoons of sugar and the juice of an orange into one litre of clean water. Studies have shown the efficacy of antibiotics in reducing the duration of the symptoms of infectious enteritis of bacterial origin, however antibiotic treatments are usually not required due to the self-limiting duration of infectious enteritis.
Urbach–Wiethe disease is typically not a life-threatening condition. The life expectancy of these patients is normal as long as the potential side effects of thickening mucosa, such as respiratory obstruction, are properly addressed. Although this may require a tracheostomy or carbon dioxide laser surgery, such steps can help ensure that individuals with Urbach–Wiethe disease are able to live a full life. Oral dimethyl sulfoxide (DMSO) has been shown to reduce skin lesions, helping to minimize discomfort for these individuals.
In cats, pythioisis is almost always confined to the skin as hairless and edematous lesions. It is usually found on the limbs, perineum, and at the base of the tail. Lesions may also develop in the nasopharynx.
The only animals that have been successfully infected with the disease are rabbits which are used for "in vivo" studies of the disease.
Other animals reported to have contracted pythiosis are bears, jaguars, camels, and birds, although these have only been singular events.
Medical treatments are available for Wilson's disease. Some increase the removal of copper from the body, while others prevent the absorption of copper from the diet.
Generally, penicillamine is the first treatment used. This binds copper (chelation) and leads to excretion of copper in the urine. Hence, monitoring of the amount of copper in the urine can be done to ensure a sufficiently high dose is taken. Penicillamine is not without problems: about 20% experience a side effect or complication of penicillamine treatment, such as drug-induced lupus (causing joint pains and a skin rash) or myasthenia (a nerve condition leading to muscle weakness). In those who presented with neurological symptoms, almost half experience a paradoxical worsening in their symptoms. While this phenomenon is observed in other treatments for Wilson's, it is usually taken as an indication for discontinuing penicillamine and commencing second-line treatment. Those intolerant to penicillamine may instead be commenced on trientine hydrochloride, which also has chelating properties. Some recommend trientine as first-line treatment, but experience with penicillamine is more extensive. A further agent, under clinical investigation by Wilson Therapeutics, with known activity in Wilson's disease is tetrathiomolybdate. This is regarded as experimental, though some studies have shown a beneficial effect.
Once all results have returned to normal, zinc (usually in the form of a zinc acetate prescription called Galzin) may be used instead of chelators to maintain stable copper levels in the body. Zinc stimulates metallothionein, a protein in gut cells that binds copper and prevents their absorption and transport to the liver. Zinc therapy is continued unless symptoms recur or if the urinary excretion of copper increases.
In rare cases where none of the oral treatments are effective, especially in severe neurological disease, dimercaprol (British anti-Lewisite) is occasionally necessary. This treatment is injected intramuscularly (into a muscle) every few weeks and has unpleasant side effects such as pain.
People who are asymptomatic (for instance, those diagnosed through family screening or only as a result of abnormal test results) are generally treated, as the copper accumulation may cause long-term damage in the future. It is unclear whether these people are best treated with penicillamine or zinc acetate.
Physiotherapy and occupational therapy are beneficial for patients with the neurologic form of the disease. The copper chelating treatment may take up to six months to start working, and these therapies can assist in coping with ataxia, dystonia, and tremors, as well as preventing the development of contractures that can result from dystonia.
There is no cure or treatment for GSS. It can, however, be identified through genetic testing. GSS is the slowest to progress among human prion diseases. Duration of illness can range from 3 months to 13 years, with an average duration of 5 or 6 years.
The first treatment for Fabry's disease was approved by the US FDA on April 24, 2003. Fabrazyme (agalsidase beta, or Alpha-galactosidase) was licensed to the Genzyme Corporation. It is an enzyme replacement therapy (ERT) designed to provide the enzyme the patient is missing as a result of a genetic malfunction. The drug is expensive — in 2012, Fabrazyme's annual cost was about US$200,000 per patient, which is unaffordable to many patients around the world without enough insurance. ERT is not a cure, but can allow improved metabolism and partially prevent disease progression, as well as potentially reverse some symptoms.
The pharmaceutical company Shire manufactures agalsidase alpha (which differs in the structure of its oligosaccharide side chains) under the brand name Replagal as a treatment for Fabry's disease, and was granted marketing approval in the EU in 2001. FDA approval was applied for the United States. However, Shire withdrew their application for approval in the United States in 2012, citing that the agency will require additional clinical trials before approval.
Clinically the two products are generally perceived to be similar in effectiveness. Both are available in Europe and in many other parts of the world, but treatment costs remain very high.
Besides these drugs, a gene therapy treatment is also available from the Canadian Institutes of Health. Other treatments (oral chaperone therapy -Amicus-, plant-based ERT -Protalix-, substrate reduction therapy -Sanofi-Genzyme-, bio-better ERT -Codexis-, gene editing solution -Sangamo- are currently being researched.
Pain associated with Fabry disease may be partially alleviated by ERT in some patients, but pain management regimens may also include analgesics, anticonvulsants, and nonsteroidal anti-inflammatory drugs, though the latter are usually best avoided in renal disease.
Other than identifying and treating any underlying conditions in secondary livedo, idiopathic livedo reticularis may improve with warming the area.
Treatment generally includes supportive care including pain management and possibly diuretics. In the those severe disease due to a bone marrow transplant, defibrotide is a proposed treatment. It has been approved for use in severe cases in Europe and the United States. A placebo controlled trial, however, has not been done as of 2016.