Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most cases of HHV-6 infection get better on their own. If encephalitis occurs ganciclovir or foscarnet may be useful.
No treatment exists for the viral infection. Antibiotics may help prevent secondary infections.
Vaccination is available in different forms, usually for naive flocks.
Good biosecurity measures should be maintained including adequate quarantine, isolation, separation of different age groups and disinfection.
There is no specific vaccine against or treatment for exanthema subitum, and most children with the disease are not seriously ill.
Infections are treated with antibiotics, particularly doxycycline, and the acute symptoms appear to respond to these drugs.
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
No serious long-term effects are known for this disease, but preliminary evidence suggests, if such symptoms do occur, they are less severe than those associated with Lyme disease.
Viral disease is usually detected by clinical presentation, for instance severe muscle and joint pains preceding fever, or skin rash and swollen lymph glands.
Laboratory investigation is not directly effective in detecting viral infections, because they do not themselves increase the white blood cell count. Laboratory investigation may be useful in diagnosing associated bacterial infections, however.
Viral infections are commonly of limited duration, so treatment usually consists in reducing the symptoms; antipyretic and analgesic drugs are commonly prescribed.
They are treated with antiprotozoal agents. Recent papers have also proposed the use of viruses to treat infections caused by protozoa.
Drugs like ketoconazole,
voriconazole, and itraconazole are generally employed in treating the infection. Actinomycetes usually respond well to medical treatment, but the eumycetes are generally resistant and may require surgical interventions including amputation.
Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection.
Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body.
Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague.
Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. Many public health specialists recommend social distancing to reduce the transmission of airborne infections.
Derzsy's disease is caused by a virus from the Parvoviridae family. It affects geese and Muscovy ducks.
The virus is shed in the faeces and thus transmission is horizontal, via the direct faecal-oral route and also indirectly via fomites. Vertical transmission is also possible.
Clinical disease only occurs in young geese and ducks between birth and 4–5 weeks of age.
No vaccine is available. Simple hygienic precautions like wearing shoes or sandals while working in fields, and washing hands and feet at regular intervals may help prevent the disease.
Extensive treatments have been used on domestic animals more than on wild animals, probably because infected domestic animals are easier to identify and treat than infected wildlife. Treatment plans and management vary across taxa because this disease tends to affect each species differently. Antifungal drugs are the first line of defense to kill the agents causing phaeohyphomycosis, but despite the significant progress made in the last two decades and a 30% increase in available antifungal drugs since 2000, many drugs are not effective against black fungi. Diseases caused black fungi are hard to treat because the fungi are very difficult to kill. This high resilience may be contributed to the presence of melanin in their cell walls. Current antifungal agents the fungi are not resistant to are posaconazole, voriconazole, and azole isavuconazole.
In 2006, a free-living Eastern box turtle, "Terrapene carolina carolina", was found with a form of phaeohyphomycosis and was brought in the Wildlife Center of Virginia. Its symptom was swelling of the right hindfoot; it was diagnosed as having chromomycosis by histopathology. The center provided a series of antimicrobial treatments and a one-month course of 1 mg itraconazole, administered orally once a day. The eastern box turtle was euthanized due to further complications and the caretakers’ belief that the turtle would not be able to survive if placed back in the wild.
A recent case of a form of phaeohyphomycosis infection was found in a dog in 2011. The Journal of the American Veterinary Medical Association published a case study in which researchers successfully managed an intracranial phaeohyphomycotic fungal granuloma in a one-year-old male Boxer dog. Veterinarians of the Department of Veterinary Clinical Sciences at Tufts University surgically removed the granuloma in the right cerebral hemisphere. The patient was treated with fluconazole for 4 months, and was followed with voriconazole for 10 months. Both are medications used to treat fungal infections. Based on magnetic resonance imaging and cerebrospinal fluid (CSF) analysis 8 months after the surgery, the male Boxer’s outcome was considered excellent.
Emphasis has been placed on how to manage this disease through careful management practices including: proper handling, preventing crowding situation with animals, and transportation. Both the animals and the environment should be treated thoroughly to hinder the spread and control the fungal infection. This is especially important since humans can also contract this disease.
Ataxia usually goes away without any treatment. In cases where an underlying cause is identified, your doctor will treat the underlying cause. In extremely rare cases, you may have continuing and disabling symptoms. Treatment includes corticosteroids, Intravenous immunoglobulin, or plasma exchange therapy. Drug treatment to improve muscle coordination has a low success rate. However, the following drugs may be prescribed: clonazepam, amantadine, gabapentin, or buspirone. Occupational or physical therapy may also alleviate lack of coordination. Changes to diet and nutritional supplements may also help. Treatment will depend on the cause. If the acute cerebellar ataxia is due to bleeding, surgery may be needed. For a stroke, medication to thin the blood can be given. Infections may need to be treated with antibiotics. Steroids may be needed for swelling (inflammation) of the cerebellum (such as from multiple sclerosis). Cerebellar ataxia caused by a recent viral infection may not need treatment.
A viral disease (or viral infection) occurs when an organism's body is invaded by pathogenic viruses, and infectious virus particles (virions)
attach to and enter susceptible cells.
Outbreaks of zoonoses have been traced to human interaction with and exposure to animals at fairs, petting zoos, and other settings. In 2005, the Centers for Disease Control and Prevention (CDC) issued an updated list of recommendations for preventing zoonosis transmission in public settings. The recommendations, developed in conjunction with the National Association of State Public Health Veterinarians, include educational responsibilities of venue operators, limiting public and animal contact, and animal care and management.
Parasitic infections can usually be treated with antiparasitic drugs.
Albendazole and mebendazole have been the treatments administered to entire populations to control hookworm infection. However, it is a costly option and both children and adults become reinfected within a few months after deparasitation occurs raising concerns because the treatment has to repeatedly be administered and drug resistance may occur.
Another medication administered to kill worm infections has been pyrantel pamoate. For some parasitic diseases, there is no treatment and, in the case of serious symptoms, medication intended to kill the parasite is administered, whereas, in other cases, symptom relief options are used. Recent papers have also proposed the use of viruses to treat infections caused by protozoa.
Cat flu is the common name for a feline upper respiratory tract disease. While feline upper respiratory disease can be caused by several different pathogens, there are few symptoms that they have in common.
While Avian Flu can also infect cats, Cat flu is generally a misnomer, since it usually does not refer to an infection by an influenza virus. Instead, it is a syndrome, a term referring to the fact that patients display a number of symptoms that can be caused by one or more of the following infectious agents (pathogens):
1. Feline herpes virus causing feline viral rhinotracheitis (cat common cold, this is the disease that is closely similar to cat flu)
2. Feline calicivirus—(cat respiratory disease)
3. "Bordetella bronchiseptica"—(cat kennel cough)
4. "Chlamydophila felis"—(chlamydia)
In South Africa the term cat flu is also used to refer to Canine Parvo Virus. This is misleading, as transmission of the Canine Parvo Virus rarely involves cats.
The most significant zoonotic pathogens causing foodborne diseases are , "Campylobacter", "Caliciviridae", and "Salmonella".
In 2006, a conference held in Berlin was focusing on the issue of zoonotic pathogen effects on food safety, urging governments to intervene, and the public to be vigilant towards the risks of catching food-borne diseases from farm-to-dining table.
Many food outbreaks can be linked to zoonotic pathogens. Many different types of food can be contaminated that have an animal origin. Some common foods linked to zoonotic contaminations include eggs, seafood, meat, dairy, and even some vegetables. Food outbreaks should be handled in preparedness plans to prevent widespread outbreaks and to efficiently and effectively contain outbreaks.
One study using the medicinal plant "Peganum harmala" showed it to have a lifesaving effect on cattle infected with East Coast fever.
The classical treatment with tetracyclines (1970–1990) cannot provide efficiency more than 50%.
Since the early 1990s, buparvaquone is used in bovine theileriosis with remarkable results (90 to 98% recovery).
Other than the buparvaquones, other chemotherapeutic options are the parvaquones, e.g. Clexon. Halofuginone lactate has also been shown to have an 80.5% efficacy against "Theirelia parva parva" infections. The ultimate factor that causes death is pulmonary edema.
In May 2010, a vaccine to protect cattle against East Coast fever reportedly had been approved and registered by the governments of Kenya, Malawi and Tanzania. This consists of cryopreserved sporozoites from crushed ticks, but it is expensive and can cause disease.
Control of the disease relies on control of ticks of domestic animals, particularly disease-resistant ticks. This is a major concern in tropical countries with large livestock populations, especially in the endemic area. Pesticides (acaricides) are applied in dipping baths or spray races, and cattle breeds with good ability to acquire immune resistance to the vector ticks are used.
Lymphoid leucosis is a disease that affects chickens, caused by the retrovirus "Avian leukosis virus".
It is a neoplastic disease caused by a virus, which may take the form of a tumor of the bursa of Fabricius and may metastasize to other tissues of the chicken and cause enlargement and swelling of the abdomen.
There is no specific treatment for neonatal hepatitis. Vitamin supplements are usually prescribed and many infants are given phenobarbital, a drug used to control seizures, but which also stimulates the liver to excrete additional bile. Formulas containing more easily digested fats are also given to the infant.
Neonatal hepatitis caused by the hepatitis A virus also usually resolves itself within six months, but cases that are the result of infection with the hepatitis B or hepatitis C viruses most likely will result in chronic liver disease. Infants who develop cirrhosis ultimately will need a liver transplant.
An airborne disease is any disease that is caused by pathogens that can be transmitted through the air. Such diseases include many of considerable importance both in human and veterinary medicine. The relevant pathogens may be viruses, bacteria, or fungi, and they may be spread through breathing, talking, coughing, sneezing, raising of dust, spraying of liquids, toilet flushing or any activities which generates aerosol particles or droplets. Human airborne diseases do not include conditions caused by air pollution such as volatile organic compounds (VOCs), gasses and any airborne particles, though their study and prevention may help inform the science of airborne disease transmission.
Mouth actinobacillosis of cattle must be differentiated from actinomycosis that affects bone tissues of the maxilla.
This disease affects the external genitalia, and is caused by equine herpesvirus 3. This disease remains with the horse for all its life. Equine coital exanthema is believed to only be transmitted during the acute phase of the disease through serous fluid from the blisters during sexual intercourse, and via breeding tools, handlers, etc.
Clinical signs include cute small lesions, no bigger than 2 mm in diameter around the vulva in mares, and on the sheath in stallions. The small bumps blister and then rupture, leaving raw, ulcerated, painful sores. While the majority of the symptoms are external, the presence of the virus can cause small and large plaque variants in tissues.