Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
Antibiotics are the primary treatment. The specific approach to their use is dependent on the individual affected and the stage of the disease. For most people with early localized infection, oral administration of doxycycline is widely recommended as the first choice, as it is effective against not only "Borrelia" bacteria but also a variety of other illnesses carried by ticks. Doxycycline is contraindicated in children younger than eight years of age and women who are pregnant or breastfeeding; alternatives to doxycycline are amoxicillin, cefuroxime axetil, and azithromycin. Individuals with early disseminated or late infection may have symptomatic cardiac disease, refractory Lyme arthritis, or neurologic symptoms like meningitis or encephalitis. Intravenous administration of ceftriaxone is recommended as the first choice in these cases; cefotaxime and doxycycline are available as alternatives.
These treatment regimens last from one to four weeks. If joint swelling persists or returns, a second round of antibiotics may be considered. Outside of that, a prolonged antibiotic regimen lasting more than 28 days is not recommended as no clinical evidence shows it to be effective. IgM and IgG antibody levels may be elevated for years even after successful treatment with antibiotics. As antibody levels are not indicative of treatment success, testing for them is not recommended.
There are two approaches to treating Chagas disease: antiparasitic treatment, to kill the parasite; and symptomatic treatment, to manage the symptoms and signs of the infection. Management uniquely involves addressing selective incremental failure of the parasympathetic nervous system. Autonomic disease imparted by Chagas may eventually result in megaesophagus, megacolon and accelerated dilated cardiomyopathy. The mechanisms that explain why Chagas targets the parasympathetic autonomic nervous system and spares the sympathetic autonomic nervous system remain poorly understood.
Anti-helminthics are often used to kill off the worms, however in some cases this may cause patients to worsen due to toxins released by the dying worms. Albendazole, ivermectin, mebendazole, and pyrantel are all commonly used, though albendazole is usually the drug of choice. Studies have shown that anti-helminthic drugs may shorten the course of the disease and relieve symptoms. Therefore anti-helminthics are generally recommended, but should be administered gradually so as to limit the inflammatory reaction.
Antiparasitic treatment is most effective early in the course of infection, but is not limited to cases in the acute phase. Drugs of choice include azole or nitro derivatives, such as benznidazole or nifurtimox. Both agents are limited in their capacity to completely eliminate "T. cruzi" from the body (parasitologic cure), especially in chronically infected patients, and resistance to these drugs has been reported.
Studies suggest antiparasitic treatment leads to parasitological cure in more than 90% of infants but only about 60–85% of adults treated in the first year of acute phase Chagas disease. Children aged six to 12 years with chronic disease have a cure rate of about 60% with benznidazole. While the rate of cure declines the longer an adult has been infected with Chagas, treatment with benznidazole has been shown to slow the onset of heart disease in adults with chronic Chagas infections.
Treatment of chronic infection in women prior to or during pregnancy does not appear to reduce the probability the disease will be passed on to the infant. Likewise, it is unclear whether prophylactic treatment of chronic infection is beneficial in persons who will undergo immunosuppression (for example, organ transplant recipients) or in persons who are already immunosuppressed (for example, those with HIV infection).
Lungworm infestations can cause significant distress to the animal but are usually treatable with drugs.
If infected with lungworm parasite, an anti-parasite drug must be administered.
In the case of a severe reaction, an anti-inflammatory drug of corticosteroids may be given for a brief period (3 to 10 days).
To treat tissue inflammation, Prednisone is usually given (5–10 days). However, there are some side effects such as increased urination or appetite.
The drugs fenbendazole or moxidectin are usually administered to kill the parasite.
There are several different lungworm parasites that have been identified. Although they all originate from the lungworm parasite, they are treated somewhat differently and requires a combination of various drugs to treat the parasite.
Anti-helminthics should generally be paired with corticosteroids in severe infections to limit the inflammatory reaction to the dying parasites. Studies suggest that a two-week regimen of a combination of mebendazole and prednisolone significantly shortened the course of the disease and length of associated headaches without observed harmful side effects. Other studies suggest that albendazole may be more favorable, because it may be less like to incite an inflammatory reaction. The Chinese herbal medicine long-dan-xie-gan-tan (LDGXT) has also been shown to have a similar anti inflammatory effect, and in mild cases may be used alone to relieve symptoms while infection resolves itself.
The medications prescribed for acute toxoplasmosis are the following:
- Pyrimethamine — an antimalarial medication
- Sulfadiazine — an antibiotic used in combination with pyrimethamine to treat toxoplasmosis
- Combination therapy is usually given with folic acid supplements to reduce incidence of thrombocytopaenia.
- Combination therapy is most useful in the setting of HIV.
- Clindamycin
- Spiramycin — an antibiotic used most often for pregnant women to prevent the infection of their children.
(other antibiotics, such as minocycline, have seen some use as a salvage therapy).
If infected during pregnancy, spiramycin is recommended in the first and early second trimesters while pyrimethamine/sulfadiazine and leucovorin is recommended in the late second and third trimesters.
In people with latent toxoplasmosis, the cysts are immune to these treatments, as the antibiotics do not reach the bradyzoites in sufficient concentration.
The medications prescribed for latent toxoplasmosis are:
- Atovaquone — an antibiotic that has been used to kill "Toxoplasma" cysts inside AIDS patients
- Clindamycin — an antibiotic that, in combination with atovaquone, seemed to optimally kill cysts in mice
After infection, steroids, such as prednisone may be used to relieve muscle pain associated with larval migration.
Early administration of anthelmintics, such as mebendazole or albendazole, decreases the likelihood of larval encystation, particularly if given within three days of infection. However, most cases are diagnosed after this time.
In humans, Mebendazole (200–400 mg three times a day for three days) or albendazole (400 mg twice a day for 8–14 days) are given to treat trichinosis. These drugs prevent newly hatched larvae from developing, but should not be given to pregnant women or children under two years of age.
This applies once an infestation is established. In many circles the first response to cutaneous myiasis once the breathing hole has formed, is to cover the air hole thickly with petroleum jelly. Lack of oxygen then forces the larva to the surface, where it can more easily be dealt with. In a clinical or veterinary setting there may not be time for such tentative approaches, and the treatment of choice might be more direct, with or without an incision. First the larva must be eliminated through pressure around the lesion and the use of forceps. Secondly the wound must be cleaned and disinfected. Further control is necessary to avoid further reinfestation.
Livestock may be treated prophylactically with slow release boluses containing ivermectin which can provide long-term protection against the development of the larvae.
Sheep also may be dipped, a process which involves drenching the animals in persistent insecticide to poison the larvae before they develop into a problem.
There is no vaccine for SVD. Prevention measures are similar to those for foot-and-mouth disease: controlling animals imported from infected areas, and sanitary disposal of garbage from international aircraft and ships, and thorough cooking of garbage. Infected animals should be placed in strict quarantine. Eradication measures for the disease include quarantining infected areas, depopulation and disposal of infected and contact pigs, and cleaning and disinfecting
contaminated premises.
Repeat chest X-rays in 2 and 4 weeks after treatment. Also, recheck a fecal sample to monitor for the presence of larvae or ova in 2 to 4 weeks. This will confirm if the parasite is still living inside the respiratory tissue.
If infection occurs or is suspected, treatment is generally with the antibiotics streptomycin or gentamicin. Doxycycline was previously used. Gentamicin may be easier to obtain than streptomycin. There is also tentative evidence to support the use of fluoroquinolones.
Rickettsialpox is treated with tetracyclines (doxycycline is the drug of choice). Chloramphenicol is a suitable alternative.
The first control method is preventive and aims to eradicate the adult flies before they can cause any damage and is called vector control. The second control method is the treatment once the infestation is present, and concerns the infected animals (including humans).
The principal control method of adult populations of myiasis inducing flies involves insecticide applications in the environment where the target livestock is kept. Organophosphorus or organochlorine compounds may be used, usually in a spraying formulation. One alternative prevention method is the sterile insect technique (SIT) where a significant number of artificially reared sterilized (usually through irradiation) male flies are introduced. The male flies compete with wild breed males for females in order to copulate and thus cause females to lay batches of unfertilized eggs which cannot develop into the larval stage.
One prevention method involves removing the environment most favourable to the flies, such as by removal of the tail. Another example is the crutching of sheep, which involves the removal of wool from around the tail and between the rear legs, which is a favourable environment for the larvae. Another, more permanent, practice which is used in some countries is mulesing, where skin is removed from young animals to tighten remaining skin – leaving it less prone to fly attack.
To prevent myiasis in humans, there is a need for general improvement of sanitation, personal hygiene, and extermination of the flies by insecticides. Clothes should be washed thoroughly, preferably in hot water, dried away from flies, and ironed thoroughly. The heat of the iron kills the eggs of myiasis-causing flies.
Treatment of loiasis involves chemotherapy or, in some cases, surgical removal of adult worms followed by systemic treatment. The current drug of choice for therapy is diethylcarbamazine (DEC), though ivermectin use is not unwarranted. The recommend dosage of DEC is 6 mg/kg/d taken three times daily for 12 days. The pediatric dose is the same. DEC is effective against microfilariae and somewhat effective against macrofilariae (adult worms).
In patients with high microfilaria load, however, treatment with DEC may be contraindicated, as the rapid microfilaricidal actions of the drug can provoke encephalopathy. In these cases, albendazole administration has proved helpful, and superior to ivermectin, which can also be risky despite its slower-acting microfilaricidal effects.
Management of "Loa loa" infection in some instances can involve surgery, though the timeframe during which surgical removal of the worm must be carried out is very short. A detailed surgical strategy to remove an adult worm is as follows (from a real case in New York City). The 2007 procedure to remove an adult worm from a male Gabonian immigrant employed proparacaine and povidone-iodine drops, a wire eyelid speculum, and 0.5 ml 2% lidocaine with epinephrine 1:100,000, injected superiorly. A 2-mm incision was made and the immobile worm was removed with forceps. Gatifloxacin drops and an eye-patch over ointment were utilized post surgery and there were no complications (unfortunately, the patient did not return for DEC therapy to manage the additional worm—and microfilariae—present in his body).
Prevention is through use of Stock coryza-free birds. In other areas culling of the whole flock is a good means of the disease control. Bacterin also is used at a dose of two to reduce brutality of the disease. Precise exposure has also has been used but it should be done with care. Vaccination of the chicks is done in areas with high disease occurrence. Treatment is done by using antibiotics such as erythromycin, Dihydrostreptomycin, Streptomycin sulphonamides, tylosin and Flouroquinolones .
There are no safe, available, approved vaccines against tularemia. However, vaccination research and development continues, with live attenuated vaccines being the most thoroughly researched and most likely candidate for approval. Sub-unit vaccine candidates, such as killed-whole cell vaccines, are also under investigation, however research has not reached a state of public use.
Optimal preventative practices include limiting direct exposure when handling potentially infected animals, such as wearing gloves and face masks while handling potentially infected animals (importantly when skinning deceased animals).
Cure rates are extremely good with modern treatments, but successful cure results may be of no symptomatic benefit to patients.
Attached ticks should be removed promptly, as removal within 36 hours can reduce transmission rates. Folk remedies for tick removal tend to be ineffective, offer no advantages in preventing the transfer of disease, and may increase the risks of transmission or infection. The best method is simply to pull the tick out with tweezers as close to the skin as possible, without twisting, and avoiding crushing the body of the tick or removing the head from the tick's body. The risk of infection increases with the time the tick is attached, and if a tick is attached for less than 24 hours, infection is unlikely. However, since these ticks are very small, especially in the nymph stage, prompt detection is quite difficult. The Australian Society of Clinical Immunology recommends against using tweezers to remove ticks but rather to kill the tick first by using a product to rapidly freeze the tick to prevent it from injecting more allergen-containing saliva. In a tick allergic person, the tick should be killed and removed in a safe place (e.g. an emergency department of a hospital).
The two drugs that have been well-described for the treatment of hymenolepiasis are praziquantel and niclosamide. Praziquantel, which is parasiticidal in a single dose for all the stages of the parasite, is the drug of choice because it acts very rapidly against "H. nana". Although structurally unrelated to other anthelminthics, it kills both adult worms and larvae. "In vitro", the drug produces vacuolization and disruption of the tegument in the neck of the worms, but not in more posterior portions of the strobila. Praziquantel is well absorbed when taken orally, and it undergoes first-pass metabolism and 80% of the dose is excreted as metabolites in urine within 24 hours.
Repeated treatment is required for "H. nana" at an interval of 7–10 days.
Praziquantel as a single dose (25 mg/kg) is the current treatment of choice for hymenolepiasis and has an efficacy of 96%. Single-dose albendazole (400 mg) is also very efficacious (>95%).
A three-day course of nitazoxanide is 75–93% efficacious. The dose is 1 g daily for adults and children over 12; 400 mg daily for children aged 4 to 11 years; and 200 mg daily for children aged 3 years or younger.
Starting antibiotics early is a first step in treating septicemic plague in humans. One of the following antibiotics may be used:
- Streptomycin
- Gentamicin
- Tetracycline or doxycycline
- Chloramphenicol
- Ciprofloxacin
Lymph nodes may require draining and the patient will need close monitoring.
In animals, antibiotics such as tetracyline or doxycycline can be used. Intravenous drip may be used to assist in dehydration scenarios. Flea treatment can also be used. In some cases euthanasia may be the best option for treatment and to prevent further spreading.