Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The underlying cause must be treated as soon as possible to stop the disease process. Corticosteroid drop can be used to minimize the scarring on the cornea along with antibiotic cover. However, residual scarring cannot be avoided which can result in long term visual impairment and corneal transplantation is not suitable due to high rejection rate from the corneal vascularization.
Proper diagnosis is essential for optimal treatment. Bacterial corneal ulcer require intensive fortified antibiotic therapy to treat the infection. Fungal corneal ulcers require intensive application of topical anti-fungal agents. Viral corneal ulceration caused by herpes virus may respond to antivirals like topical acyclovir ointment instilled at least five times a day. Alongside, supportive therapy like pain medications are given, including topical cycloplegics like atropine or homatropine to dilate the pupil and thereby stop spasms of the ciliary muscle. Superficial ulcers may heal in less than a week. Deep ulcers and descemetoceles may require conjunctival grafts or conjunctival flaps, soft contact lenses, or corneal transplant. Proper nutrition, including protein intake and Vitamin C are usually advised. In cases of Keratomalacia, where the corneal ulceration is due to a deficiency of Vitamin A, supplementation of the Vitamin A by oral or intramuscular route is given. Drugs that are usually contraindicated in corneal ulcer are topical corticosteroids and anesthetics - these should not be used on any type of corneal ulcer because they prevent healing, may lead to superinfection with fungi and other bacteria and will often make the condition much worse.
Epithelial keratitis is treated with topical antivirals, which are very effective with low incidence of resistance. Treatment of the disease with topical antivirals generally should be continued for 10–14 days. Aciclovir ophthalmic ointment and Trifluridine eye drops have similar effectiveness but are more effective than Idoxuridine and Vidarabine eye drops. Oral acyclovir is as effective as topical antivirals for treating epithelial keratitis, and it has the advantage of no eye surface toxicity. For this reason, oral therapy is preferred by some ophthalmologists.
Ganciclovir and brivudine treatments were found to be equally as effective as acyclovir in a systematic review.
Valacyclovir, a pro-drug of acyclovir likely to be just as effective for ocular disease, can cause thrombotic thrombocytopenic purpura/Hemolytic-uremic syndrome in severely immunocompromised patients such as those with AIDS; thus, it must be used with caution if the immune status is unknown.
Topical corticosteroids are contraindicated in the presence of active herpetic epithelial keratitis; patients with this disease who are using systemic corticosteroids for other indications should be treated aggressively with systemic antiviral therapy.
The effect of interferon with an antiviral agent or an antiviral agent with debridement needs further assessment.
Herpetic stromal keratitis is treated initially with prednisolone drops every 2 hours
accompanied by a prophylactic antiviral drug: either topical antiviral or an oral agent such as acyclovir or valacyclovir. The prednisolone drops are tapered every 1–2 weeks depending on the degree of clinical improvement. Topical antiviral medications are not absorbed by the cornea through an intact epithelium, but orally administered acyclovir penetrates an intact cornea and anterior chamber. In this context, oral acyclovir might benefit the deep corneal inflammation of disciform keratitis.
Topical antibiotics are used at hourly intervals to treat infectious corneal ulcers. Cycloplegic eye drops are applied to give rest to the eye. Pain medications are given as needed. Loose epithelium and ulcer base can be scraped off and sent for culture sensitivity studies to find out the pathogenic organism. This helps in choosing appropriate antibiotics. Complete healing takes anywhere from about a few weeks to several months.
Refractory corneal ulcers can take a long time to heal, sometimes months. In case of progressive or non-healing ulcers, surgical intervention by an ophthalmologist with corneal transplantation may be required to save the eye. In all corneal ulcers it is important to rule out predisposing factors like diabetes mellitus and immunodeficiency.
A presumptive diagnosis of fungal keratitis requires immediate empirical therapy. Natamycin ophthalmic suspension is the drug of choice for filamentous fungal infection. Fluconazole ophthalmic solution is recommended for Candida infection of the cornea. Amphotericin B eye drops may be required for non-responding cases, but can be quite toxic and requires expert pharmacist for preparation. Other medications have also been tried with moderate success. Consult your eye care professional in any case as they will have the best treatment.
Previous long-standing eye infection which possibly during childhood time recalled as being treated with antibiotic and/or hospitalized over long period of time.
Reduction of neovascularization has been achieved in rats by the topical instillation of commercially available triamcinolone and doxycycline.
Some evidence exists to suggest that the Angiotensin II receptor blocker drug telmisartan will prevent corneal neovascularization.
Recent treatment developments include topical application of bevacizumab, an anti-VEGF.
In very severe cases of necrotizing scleritis, eye surgery must be performed to repair damaged corneal tissue in the eye and preserve the patient's vision. For less severe cases, nonsteroidal anti-inflammatory drugs, such as ibuprofen, are prescribed for pain relief. Scleritis itself is treated with an oral medication containing corticosteroids and an eye solution. In some cases, antibiotics are prescribed. Simply using eye drops will not treat scleritis. In more aggressive cases of scleritis, chemotherapy (such as systemic immunosuppressive therapy with such drugs as cyclophosphamide or azathioprine) may be used to treat the disease. If not treated, scleritis can cause blindness.
Early diagnosis, targeted treatment according to the severity of the disease, and regular monitoring of patients with neurotrophic keratitis are critical to prevent damage progression and the occurrence of corneal ulcers, especially considering that the deterioration of the condition is often poorly symptomatic.
The purpose of treatment is to prevent the progression of corneal damage and promote healing of the corneal epithelium. The treatment should always be personalized according to the severity of the disease. Conservative treatment is typically the best option.
In stage I, the least serious, treatment consists of the administration of preservative-free artificial tears several times a day in order to lubricate and protect the ocular surface, improving the quality of the epithelium and preventing the possible loss of transparency of the cornea.
In stage II, treatment should be aimed at preventing the development of corneal ulcers and promoting the healing of epithelial lesions. In addition to artificial tears, topical antibiotics may also be prescribed to prevent possible infections. Patients should be monitored very carefully since, being the disease poorly symptomatic, the corneal damage may progress without the patient noticing any worsening of the symptoms. Corneal contact lenses can also be used in this stage of the disease, for their protective action to improve corneal healing.
In the most severe forms (stage III), it is necessary to stop the progression towards corneal perforation: in these cases, a possible surgical treatment option is tarsorrhaphy, i.e. the temporary or permanent closure of the eyelids by means of sutures or botulinum toxin injection. This protects the cornea, although the aesthetic result of these procedures may be difficult to accept for patients. Similarly, a procedure that entails the creation of a conjunctival flap has been shown to be effective in the treatment of chronic corneal ulcers with or without corneal perforation. In addition, another viable therapeutic option is amniotic membrane graft, which has recently been shown to play a role in stimulating corneal epithelium healing and in reducing vascularisation and inflammation of the ocular surface . Other approaches used in severe forms include the administration of autologous serum eye drops.
Research studies have focused on developing novel treatments for neurotrophic keratitis, and several polypeptides, growth factors and neuromediators have been proposed[25]. Studies were conducted on topical treatment with Substance P and IGF-1 (insulin-like growth factor-1), demonstrating an effect on epithelial healing[26]. Nerve Growth Factor (NGF) play a role in the epithelial proliferation and differentiation and in the survival of corneal sensory nerves. Topical treatment with murine NGF showed to promote recovery of epithelial integrity and corneal sensitivity in NK patients[27]. Recently, a recombinant human nerve growth factor eye drop formulation has been developed for clinical use[28].
Cenegermin, a recombinant form of human NGF, has recently been approved in Europe in an eye drop formulation for neurotrophic keratitis.
Depending on severity, therapies may range from topical or oral anti-inflammatories to irrigation and surgical repair.
Treatments for corneal neovascularization are predominately off-lab with a multitude of complications as a result. The desired results from medical therapy may not always occur, ergo an invasive procedure may be needed to prevent further decrease in corneal avascularity.
For contact lenses related hypoxia, ceasing the use of contact lenses is the first step until corneal neovascularization is addressed by a physician. Modern rigid gas permeable and silicon hydrogel contact lenses have a much higher level of oxygen transmissibility, making them effective alternatives to help prevent corneal neovascularization.
Topical administration of steroids and non-steroid anti-inflammatory drugs are first-line treatment for individuals with CNV. The administration of steroids can increase the risk of infection, glaucoma, cataracts, herpes simplex recurrence. The anti-inflammatory drugs, however, increase the risk of corneal ulceration and melting.
Since VEGF plays an important role in vasculogenesis and pathologic neovascularization associated with eye diseases, a potential treatment for CNV is to inhibit VEGF activity by competing the binding of VEGF with specific neutralizing anti-VEGF antibody. VEGF inhibitors include pegatanib sodium, ranibizumab, and off-label bevacizumab are currently used for treatment of various retinal disease. Anti-VEGF antibodies such as the application of ranibizumab or bevacizumab have has been shown to reduce corneal neovascularization. Both ranibizumab and bevacizumab uses the same mechanism and inhibits all iso-forms of VEGF. The significant reduction in invasion of in-growth blood vessels in terms of neovascular area and vessel caliber suggests that treatment with ranibizumab induces thinning of the blood vessels, however, there's no significant change of the blood vessel's length. Using anti-VEGF antibodies to treat CNV has some limitations such as it is not a cure and may require repeated treatments to maintain positive effects over time. Topical and/or subconjunctival administration of bevaicizumab or ranibizumab have demonstrated short-term safety and efficacy, however long term effects have not been documented. Anti-VEGF therapy is currently an experimental treatment.
If the cornea is inflamed via corneal neovascularization, the suppression of enzymes can block CNV by compromising with corneal structural integrity. Corneal neovascularization can be suppressed with a combination of orally administration of doxycycline and with topical corticosteroid.
Surgical Options
Invasive solutions for corneal neovascularization are reserved when the medical therapies do not provide the desired results.
Invading blood tissues and ablating tissues in the cornea can be obstructed by the use of laser treatments such as Argon and s. Irradiation and/or damages to adjacent tissues caused by the procedure can result in corneal hemorrhage and corneal thinning. Obstruction of the blood vessels can be unsuccessful due to the depth, size, and, high blood flow rate of the vessels. In conjunction, thermal damage from the lasers can trigger inflammatory response which can exaggerate the neovascularization.
An effective treatment is photodynamic therapy, however, this treatment has limited clinical acceptance due to high costs and many potential complications involved that are also related to laser ablation. Complications can include irradiation from previously injected photosensitive dye inducing apoptosis and necrosis of the endothelium and basement membrane.
Diathermy and cautery is a treatment where an electrolysis needle is inserted into the feeder vessels in the limbus. The vessels are obstructed by a coagulating current through the use of unipolar diathermy unit or by thermal cautery.
Patients presenting with no symptoms, and not affected by the syndrome may not require treatment. Corticosteroids have been reported to be of benefit in select patients. Bronchodilators may assist with breathing issues and resolution may occur with the use of Highly Active Anti-Retroviral Therapy. However, responses to different treatments are widely varied, and no single first line treatment represents the default treatment for lymphocytic interstitial pneumonia.
The infection typically takes a long time to heal, since the fungus itself is slow growing. Corneal perforation can occur in patients with untreated or partially treated infectious keratitis and requires surgical intervention in the form of corneal transplantation.
The antihistamine hydroxyzine failed to demonstrate superiority over placebo in treatment of IC patients in a randomized, controlled, clinical trial.
Amitriptyline has been shown to be effective in reducing symptoms such as chronic pelvic pain and nocturia in many patients with IC/BPS with a median dose of 75 mg daily. In one study, the antidepressant duloxetine was found to be ineffective as a treatment, although a patent exists for use of duloxetine in the context of IC, and is known to relieve neuropathic pain. The calcineurin inhibitor cyclosporine A has been studied as a treatment for interstitial cystitis due to its immunosuppressive properties. A prospective randomized study found cyclosporine A to be more effective at treating IC symptoms than pentosan polysulfate, but also had more adverse effects.
Oral pentosan polysulfate is believed to repair the protective glycosaminoglycan coating of the bladder, but studies have encountered mixed results when attempting to determine if the effect is statistically significant compared to placebo.
Diet modification is often recommended as a first-line method of self-treatment for interstitial cystitis, though rigorous controlled studies examining the impact diet has on interstitial cystitis signs and symptoms are currently lacking. Individuals with interstitial cystitis often experience an increase in symptoms when they consume certain foods and beverages. Avoidance of these potential trigger foods and beverages such as caffeine-containing beverages including coffee, tea, and soda, alcoholic beverages, chocolate, citrus fruits, hot peppers, and artificial sweeteners may be helpful in alleviating symptoms. Diet triggers vary between individuals with IC; the best way for a person to discover his or her own triggers is to use an elimination diet. Sensitivity to trigger foods may be reduced if calcium glycerophosphate and/or sodium bicarbonate is consumed. The foundation of therapy is a modification of diet to help patients avoid those foods which can further irritate the damaged bladder wall.
The mechanism by which dietary modification benefits people with IC is unclear. Integration of neural signals from pelvic organs may mediate the effects of diet on symptoms of IC.
Due to the different underlying causes, proper diagnosis, treatment, and prognosis can only be determined by an eye care professional. Punctate epithelial erosions may be treated with artificial tears. In some disorders, topical antibiotic is added to the treatment. Patients should discontinue contact lens wear until recovery.
One treatment used is polyhexamethylene biguanide, PHMB.
Propamidine isethionate has also shown some effectiveness.
Another possible agent is chlorhexidine.
Keratoplasty may sometimes be required.
A combined regimen of propamidine, miconazole nitrate, and neomycin has also been suggested.
A recent Cochrane review found one study that compared the effectiveness of chlorhexidine eye drops against PHMB eye drops, for eyes with "Acanthamoeba" keratitis. The differences between treatments were not statistically significant; the review found that 86% of eyes treated with chlorhexidine eye drops reported a resolution of infection, compared to 78% of eyes treated with PHMB eye drops. The study also found that 71% of eyes treated with chlorhexidine eye drops reported improved visual acuity after treatment, compared to 57% of eyes in the PMGB group; these results were also not significant.
Many people with this condition have no symptoms. Treatment is aimed at the health problems causing the lung problem and the complications caused by the disorder.
Fast-acting drugs for RA include aspirin and corticosteroids, which alleviate pain and reduce inflammation. Slow-acting drugs termed disease modifying antirheumatic drugs (DMARDs), include gold, methotrexate and hydroxychloroquine (Plaquenil), which promote disease remission and prevent progressive joint destruction. In patients with less severe RA, pain relievers, anti-inflammatory drugs and physical rest are sufficient to improve quality of life. In patients with joint deformity, surgery is the only alternative for recovering articular function.
Prognosis is related to the underlying disorder and the type and severity of lung disease. In severe cases, lung transplantation can be considered. This is more common in cases of bronchiolitis obliterans, pulmonary fibrosis, or pulmonary hypertension. Most complications are not fatal, but does reduce life expectancy to an estimated 5 to 10 years.
For the allergic type, cool water poured over the face with the head inclined downward constricts capillaries, and artificial tears sometimes relieve discomfort in mild cases. In more severe cases, nonsteroidal anti-inflammatory medications and antihistamines may be prescribed. Persistent allergic conjunctivitis may also require topical steroid drops.
Viral conjunctivitis usually resolves on its own and does not require any specific treatment. Antihistamines (e.g., diphenhydramine) or mast cell stabilizers (e.g., cromolyn) may be used to help with the symptoms. Povidone iodine has been suggested as a treatment, but as of 2008 evidence to support it was poor.
Topical antibiotics may be reasonable.
One review has found that eye drops to numb the surface of the eye such as tetracaine improve pain; however, their safety is unclear. Another review did not find evidence of benefit and concluded there was not enough data on safety.
NSAID eye drops are also useful. A 2000 review found no good evidence to support medications that paralyze the iris. A 2017 review did not find evidence to suggest that topical NSAIDs would significantly reduce pain over standard-of-care treatments, but did find that NSAIDs could be associated with people using fewer pain medications by mouth.
There is not good evidence for the treatment of recurrent disease. Special content lenses do not appear very useful.
Treatment is primarily supportive. Management in an intensive care unit is required and the need for mechanical ventilation is common. Therapy with corticosteroids is generally attempted, though their usefulness has not been established. The only treatment that has met with success to date is a lung transplant.
Treatment depends on the cause of the keratitis. Infectious keratitis can progress rapidly, and generally requires urgent antibacterial, antifungal, or antiviral therapy to eliminate the pathogen. Antibacterial solutions include levofloxacin, gatifloxacin, moxifloxacin, ofloxacin. It is unclear if steroid eye drops are useful or not.
In addition, contact lens wearers are typically advised to discontinue contact lens wear and replace contaminated contact lenses and contact lens cases. (Contaminated lenses and cases should not be discarded as cultures from these can be used to identify the pathogen).
Aciclovir is the mainstay of treatment for HSV keratitis and steroids should be avoided at all costs in this condition. Application of steroids to a dendritic ulcer caused by HSV will result in rapid and significant worsening of the ulcer to form an 'amoeboid' or 'geographic' ulcer, so named because of the ulcer's map like shape.