Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When the lesion is localized, it is generally curable. However, long-term survival for children with advanced disease older than 18 months of age is poor despite aggressive multimodal therapy (intensive chemotherapy, surgery, radiation therapy, stem cell transplant, differentiation agent isotretinoin also called 13-"cis"-retinoic acid, and frequently immunotherapy with anti-GD2 monoclonal antibody therapy).
Biologic and genetic characteristics have been identified, which, when added to classic clinical staging, has allowed patient assignment to risk groups for planning treatment intensity. These criteria include the age of the patient, extent of disease spread, microscopic appearance, and genetic features including DNA ploidy and N-myc oncogene amplification (N-myc regulates microRNAs), into low, intermediate, and high risk disease. A recent biology study (COG ANBL00B1) analyzed 2687 neuroblastoma patients and the spectrum of risk assignment was determined: 37% of neuroblastoma cases are low risk, 18% are intermediate risk, and 45% are high risk. (There is some evidence that the high- and low-risk types are caused by different mechanisms, and are not merely two different degrees of expression of the same mechanism.)
The therapies for these different risk categories are very different.
- Low-risk disease can frequently be observed without any treatment at all or cured with surgery alone.
- Intermediate-risk disease is treated with surgery and chemotherapy.
- High-risk neuroblastoma is treated with intensive chemotherapy, surgery, radiation therapy, bone marrow / hematopoietic stem cell transplantation, biological-based therapy with 13-"cis"-retinoic acid (isotretinoin or Accutane) and antibody therapy usually administered with the cytokines GM-CSF and IL-2.
With current treatments, patients with low and intermediate risk disease have an excellent prognosis with cure rates above 90% for low risk and 70–90% for intermediate risk. In contrast, therapy for high-risk neuroblastoma the past two decades resulted in cures only about 30% of the time. The addition of antibody therapy has raised survival rates for high-risk disease significantly. In March 2009 an early analysis of a Children's Oncology Group (COG) study with 226 high-risk patients showed that two years after stem cell transplant 66% of the group randomized to receive ch14.18 antibody with GM-CSF and IL-2 were alive and disease-free compared to only 46% in the group that did not receive the antibody. The randomization was stopped so all patients enrolling on the trial will receive the antibody therapy.
Chemotherapy agents used in combination have been found to be effective against neuroblastoma. Agents commonly used in induction and for stem cell transplant conditioning are platinum compounds (cisplatin, carboplatin), alkylating agents (cyclophosphamide, ifosfamide, melphalan), topoisomerase II inhibitor (etoposide), anthracycline antibiotics (doxorubicin) and vinca alkaloids (vincristine). Some newer regimens include topoisomerase I inhibitors (topotecan and irinotecan) in induction which have been found to be effective against recurrent disease.
Radiotherapy alone is reserved only for small lesions not appropriate for either surgery or chemotherapy. Both photon and proton radiotherapy have been used effectively to treat esthesioneuroblastoma. Proton radiotherapy has recently been shown to be effective in a 10-person study with Kadish C tumors, while delivering less toxicity to the nervous system.
Chemotherapy with topotecan and cyclophosphamide is frequently used in refractory setting and after relapse.
Chemotherapy is used in a multimodality treatment plan generally for more advanced, unresectable or reoccurring tumors. Cyclophosphamide, vincristine and doxorubicin have been used as neoadjuvant chemotherapy drugs for grade C esthesioneuroblastoma before surgical resection, producing fair outcomes. Cisplatin and etoposide are often used to treat esthesioneuroblastoma as neoadjuvants or adjuvants with radiotherapy or surgery. Study results are promising. In advanced stage esthesioneuroblastoma in pediatric patients, where surgery is no longer possible, aggressive chemotherapy and radiotherapy has resulted in some tumor control and long term survival.
The Stehlin Foundation currently offers DSRCT patients the opportunity to send samples of their tumors free of charge for testing. Research scientists are growing the samples on nude mice and testing various chemical agents to find which are most effective against the individual's tumor.
Patients with advanced DSRCT may qualify to participate in clinical trials that are researching new drugs to treat the disease.
There is not much evidence supporting the claim that radiotherapy is a beneficial and effective means of treatment. Typically, radiotherapy is used postoperatively in respect to whether or not a partial or complete excision of the tumor has been accomplished. The histopathological features of CNC, neuronal differentiation, low mitotic activity, absence of vascular endothelial proliferation, and tumor necrosis, suggest that the tumor may be resistant to ionizing radiation. However, when radiotherapy is used, whole brain or involved-field treatment is given. This method utilizes a standard fractionation schedule and a total tumor dose of 50-55 Gy. Gamma knife surgery is a form of radiotherapy, more specifically radiosurgery that uses beams of gamma rays to deliver a certain dosage of radiation to the tumor. Gamma knife surgery is incredibly effective at treating neurocytoma and maintaining tumor control after the procedure when a complete excision has been performed. Some studies have found that the success rate of tumor control is around 90% after the first five years and 80% after the first ten years. Gamma knife surgery is the most recorded form of radiotherapy performed to treat remnants of the CNC tumor after surgery.
Chemotherapy is typically limited to patients with recurrent central neurocytoma. The course of chemotherapy used for CNC is one of two platinum-based regimes. The two regimes are:
- Carboplatin + VP-16 + ifosfamide
- cisplatin + VP-16 + cyclophosphamide
Because chemotherapy is used in rare cases there is still information to be gathered as to the efficacy of chemotherapy to treat benign CNC. Therefore, recommendations must be viewed as limited and preliminary.
Symptomatic care should be given to all patients with brain metastases, as they often cause severe, debilitating symptoms. Treatment consists mainly of:
- Corticosteroids – Corticosteroid therapy is essential for all patients with brain metastases, as it prevents development of cerebral edema, as well as treating other neurological symptoms such as headaches, cognitive dysfunction, and emesis. Dexamethasone is the corticosteroid of choice. Although neurological symptoms may improve within 24 to 72 hours of starting corticosteroids, cerebral edema may not improve for up to a week. In addition, patients may experience adverse side effects from these drugs, such as myopathy and opportunistic infections, which can be alleviated by decreasing the dose.
- Anticonvulsants – Anticonvulsants should be used for patients with brain metastases who experience seizures, as there is a risk of status epilepticus and death. Newer generation anticonvulsants including Lamotrigine and Topiramate are recommended due to their relatively limited side effects. It is not recommended to prophylactically give anti-seizure medications when a seizure has not yet been experienced by a patient with brain metastasis.
Radiotherapy plays a critical role in the treatment of brain metastases, and includes whole-brain irradiation, fractionated radiotherapy, and radiosurgery. Whole-brain irradiation is used as a primary treatment method in patients with multiple lesions and is also used alongside surgical resection when patients have single and accessible tumors. However, it often causes severe side effects, including radiation necrosis, dementia, toxic leukoencephalopathy, partial to complete hair loss, nausea, headaches, and otitis media. In children this treatment may cause mental retardation, psychiatric disturbances, and other neuropsychiatric effects.
The prognosis for DSRCT remains poor. Prognosis depends upon the stage of the cancer. Because the disease can be misdiagnosed or remain undetected, tumors frequently grow large within the abdomen and metastasize or seed to other parts of the body.
There is no known organ or area of origin. DSRCT can metastasize through lymph nodes or the blood stream. Sites of metastasis include the spleen, diaphragm, liver, large and small intestine, lungs, central nervous system, bones, uterus, bladder, genitals, abdominal cavity, and the brain.
A multi-modality approach of high-dose chemotherapy, aggressive surgical resection, radiation, and stem cell rescue improves survival for some patients. Reports have indicated that patients will initially respond to first line chemotherapy and treatment but that relapse is common.
Some patients in remission or with inoperable tumor seem to benefit from long term low dose chemotherapy, turning DSRCT into a chronic disease.
Because ganglioneuromas are benign, treatment may not be necessary, as it would expose patients to more risk than leaving it alone. If there are symptoms or major physical deformity, treatment usually consists of surgery to remove the tumor.
For treatment purposes, MCACL has been traditionally considered a non-small cell lung carcinoma (NSCLC). Complete radical surgical resection is the treatment of choice.
There is virtually no data regarding new molecular targets or targeted therapy in the literature to date. Iwasaki and co-workers failed to find mutations of the epidermal growth factor receptor (EGFR) or the cellular Kirsten rat sarcoma virus oncogene "K-ras" in one reported case.
Most ganglioneuromas are noncancerous, thus expected outcome is usually good. However, a ganglioneuroma may become cancerous and spread to other areas, or it may regrow after removal.
If the tumor has been present for a long time and has pressed on the spinal cord or caused other symptoms, it may have caused irreversible damage that cannot be corrected with the surgical removal of the tumor. Compression of the spinal cord may result in paralysis, especially if the cause is not detected promptly.
As metanephric adenomas are considered benign, they can be left in place, i.e. no treatment is needed.
MEM comprises a heterogeneous group of neoplasms believed to originate from the neural crest. First hints to this type of tumor were probably from Shuangshoti and Nestky (1971) and from Holimon and Rosenblum (1971) (2-3). Additional contributions were provided thereafter by Naka et al. (1975), Karcioglu et al. (1977), Cozzutto et al. (1982) and Kawamoto et al. (1987).
Kosem et al. collected 44 cases of MEM in a 2004 review and examined management data finding out that resection with pre- or post-surgery chemotherapy yielded the best results with one death only in 13. In the five cases reported by Mouton et al. an aggressive chemotherapy and adequate surgical excision granted a disease-free interval for 7 to 50 months. The attainability of radical surgical
ablation seems the most important prognostic factor (10).
Treatment may include the following:
- Surgery with or without radiation
- Radiotherapy
Fast neutron therapy has been used successfully to treat salivary gland tumors, and has shown to be significantly more effective than photons in studies treating unresectable salivary gland tumors.
- Chemotherapy
The first route of treatment in Osteoblastoma is via medical means. Although necessary, radiation therapy (or chemotherapy) is controversial in the treatment of osteoblastoma. Cases of postirradiation sarcoma have been reported after use of these modalities. However, it is possible that the original histologic diagnosis was incorrect and the initial lesion was an osteosarcoma, since histologic differentiation of these two entities can be very difficult.
The alternative means of treatment consists of surgical therapy. The treatment goal is complete surgical excision of the lesion. The type of excision depends on the location of the tumor.
- For stage 1 and 2 lesions, the recommended treatment is extensive intralesional excision, using a high-speed burr. Extensive intralesional resections ideally consist of removal of gross and microscopic tumor and a margin of normal tissue.
- For stage 3 lesions, wide resection is recommended because of the need to remove all tumor-bearing tissue. Wide excision is defined here as the excision of tumor and a circumferential cuff of normal tissue around the entity. This type of complete excision is usually curative for osteoblastoma.
In most patients, radiographic findings are not diagnostic of osteoblastoma; therefore, further imaging is warranted. CT examination performed with the intravenous administration of contrast agent poses a risk of an allergic reaction to contrast material.
The lengthy duration of an MRI examination and a history of claustrophobia in some patients are limiting the use of MRI. Although osteoblastoma demonstrates increased radiotracer accumulation, its appearance is nonspecific, and differentiating these lesions from those due to other causes involving increased radiotracer accumulation in the bone is difficult. Therefore, bone scans are useful only in conjunction with other radiologic studies and are not best used alone.
Ganglioneuroblastoma is a variant of neuroblastoma that is surrounded by ganglion cells.
It can be difficult to diagnose.
Nodular ganglioneuroblastoma can be divided by prognosis.
Treatment of Meigs' syndrome consists of thoracentesis and paracentesis to drain off the excess fluid (exudate), and unilateral salpingo-oophorectomy or wedge resection to correct the underlying cause.
MCACL has a much more favorable prognosis than most other forms of adenocarcinoma and most other NSCLC's. Cases have been documented of continued growth of these lesions over a period of 10 years without symptoms or metastasis. The overall mortality rate appears to be somewhere in the vicinity of 18% to 27%, depending on the criteria that are used to define this entity.
Ectomesenchymoma is a rare, fast-growing tumor of the nervous system or soft tissue that occurs mainly in children, although cases have been reported in patients up to age 60. Ectomesenchymomas may form in the head and neck, abdomen, perineum, scrotum, or limbs. Also called malignant ectomesenchymoma.
Malignant ectomesenchymoma (MEM) is a rare tumor of soft tissues or the CNS, which is composed of both neuroectodermal elements [represented by ganglion cells and/or well-differentiated or poorly differentiated neuroblastic cells such as ganglioneuroma, ganglioneuroblastoma, neuroblastoma, peripheral primitive neuroectodermal tumors – PNET] and one or more mesenchymal neoplastic elements, usually rhabdomyosarcoma . The most accepted theory suggests that this tumor arises from remnants of migratory neural crest cells and thus from the ectomesenchyme.
It is contained within the "neuroblastic tumors" group, which includes:
- Ganglioneuroma (benign)
- Ganglioneuroblastoma (intermediate).
- Neuroblastoma (aggressive)
There is no known definitive cure for OMS. However, several drugs have proven to be effective in its treatment.
Some of medication used to treat the symptoms are:
- ACTH has shown improvements in symptoms but can result in an incomplete recovery with residual deficits.
- Corticosteroids (such as "prednisone" or "methylprednisolone") used at high dosages (500 mg - 2 g per day intravenously for a course of 3 to 5 days) can accelerate regression of symptoms. Subsequent very gradual tapering with pills generally follows. Most patients require high doses for months to years before tapering.
- Intravenous Immunoglobulins (IVIg) are often used with varying results.
- Several other immunosuppressive drugs, such as cyclophosphamide and azathioprine, may be helpful in some cases.
- Chemotherapy for neuroblastoma may be effective, although data is contradictory and unconvincing at this point in time.
- Rituximab has been used with encouraging results.
- Other medications are used to treat symptoms without influencing the nature of the disease (symptomatic treatment):
- Trazodone can be useful against irritability and sleep problems
- Additional treatment options include plasmapheresis for severe, steroid-unresponsive relapses.
The National Organization for Rare Disorders (NORD) recommends FLAIR therapy consisting of a three-agent protocol involving front-loaded high-dose ACTH, IVIg, and rituximab that was developed by the National Pediatric Myoclonus Center, and has the best-documented outcomes. Almost all patients (80-90%) show improvement with this treatment and the relapse rate appears to be about 20%.
A more detailed summary of current treatment options can be found at Treatment Options
The following medications should probably be avoided:
- Midazolam - Can cause irritability.
- Melatonin - Is known to stimulate the immune system.
- Also, see for more details
JCT often is described as benign, however one case of metastasis has been reported, so its malignant potential is uncertain. In most cases the tumor is encapsulated.
Diffuse large B-cell lymphomas of the stomach are primarily treated with chemotherapy with CHOP (cyclophosphamide+doxorubicine+vincristine+prednisone) with or without rituximab being a usual first choice.
Antibiotic treatment to eradicate H. pylori is indicated as first line therapy for MALT lymphomas. About 60% of MALT lymphomas completely regress with eradication therapy. Radiation treatment for H. pylori negative gastric malt lymphoma, has a high success rate, 90% or better after 5 years. Second line therapy for MALT lymphomas is usually chemotherapy with a single agent, and complete response rates of greater than 70% have been reported.
Subtotal gastrectomy, with post-operative chemotherapy is undertaken in refractory cases, or in the setting of complications, including gastric outlet obstruction.