Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
At-home treatments include desensitizing toothpastes or dentifrices, potassium salts, mouthwashes and chewing gums.
A variety of toothpastes are marketed for dentin hypersensitivity, including compounds such as strontium chloride, strontium acetate, arginine, calcium carbonate, hydroxyapatite and calcium sodium phosphosilicate. Desensitizing chewing gums and mouthwashes are also marketed.
Potassium-containing toothpastes are common; however, the mechanism by which they may reduce hypersensitivity is unclear. Animal research has demonstrated that potassium ions placed in deep dentin cavities cause nerve depolarization and prevent re-polarization. It is not known if this effect would occur with the twice-daily, transient and small increase in potassium ions in saliva that brushing with potassium-containing toothpaste creates. In individuals with dentin hypersensitivity associated with exposed root surfaces, brushing twice daily with toothpaste containing 5% potassium nitrate for six to eight weeks reduces reported sensitivity to tactile, thermal and air blast stimuli. However, meta analysis reported that these individuals' subjective report of sensitivity did not significantly change after six to eight weeks of using the potassium nitrate toothpaste.
Desensitizing toothpastes containing potassium nitrate have been used since the 1980s while toothpastes with potassium chloride or potassium citrate have been available since at least 2000. It is believed that potassium ions diffuse along the dentinal tubules to inactivate intradental nerves. However, , this has not been confirmed in intact human teeth and the desensitizing mechanism of potassium-containing toothpastes remains uncertain. Since 2000, several trials have shown that potassium-containing toothpastes can be effective in reducing dentin hypersensitivity, although rinsing the mouth after brushing may reduce their efficacy.
Studies have found that mouthwashes containing potassium salts and fluorides can reduce dentine hypersensitivity, although rarely to any significant degree. , no controlled study of the effects of chewing gum containing potassium chloride has been made, although it has been reported as significantly reducing dentine hypersensitivity.
Nano-hydroxyapatite (nano-HAp) is considered one of the most biocompatible and bioactive materials, and has gained wide acceptance in dentistry in recent years. An increasing number of reports have shown that nano-hydroxyapatite shares characteristics with the natural building blocks of enamel having the potential, due to its particle size, to occlude exposed dentinal tubules helping to reduce hypersensitivity and enhancing teeth remineralization.
For this reason, the number of toothpastes and mouthwashes that already incorporate nano-hydroxyapatite as a desensitizing agent is increasing.
In-office treatments may be much more complex and they may include the application of dental sealants, having fillings put over the exposed root that is causing the sensitivity, or a recommendation to wear a specially made night guard or retainer if the problems are a result of teeth grinding.
Other possible treatments include fluorides are also used because they decrease permeability of dentin "in vitro". Also, potassium nitrate can be applied topically in an aqueous solution or an adhesive gel. Oxalate products are also used because they reduce dentin permeability and occlude tubules more consistently. However, while some studies have showed that oxalates reduced sensitivity, others reported that their effects did not differ significantly from those of a placebo. Nowadays, dentin hypersensitivity treatments use adhesives, which include varnishes, bonding agents and restorative materials because these materials offer improved desensitization.
Low-output lasers are also suggested for dentin hypersensitivity, including GaAlAs lasers and . They are thought to act by producing a transient reduction in action potential in C-fibers in the pulp, but Aδ-fibers are not affected.
In order for successful treatment of abrasion to occur, the aetiology first needs to be identified. The most accurate way of doing so is completing a thorough medical, dental, social and diet history. All aspects needs to be investigated as in many cases the cause of abrasion can be multi-factorial. Once a definitive diagnosis is completed the appropriate treatment can commence.
Treatment for abrasion can present in varying difficulties depending on the current degree or progress caused by the abrasion. Abrasion often presents in conjunction with other dental conditions such as attrition, decay and erosion however the below treatment is for abrasion alone. Successful treatment focuses on the prevention and progression on the condition and modifies the current habit/s instigating the condition.
If the aetiology of abrasion is due to habitual behaviours, the discontinuation and change of habit is critical in the prevention of further tooth loss. The correct brushing technique is pivotal and involves a gentle scrub technique with small horizontal movements with an extra-soft/soft bristle brush. Excessive lateral force can be corrected by holding the toothbrush in a pen grasp or by using the non-dominant hand to brush. If abrasion is the result of an ill-fitting dental appliance, this should be corrected or replaced by a dental practitioner and should not be attempted in a home setting.
Involves repeated cycles of etching with 37% phosphoric acid followed by applying 5% sodium hypochlorite until improvement of discolouration is achieved. Clear resin composite or resin infiltrate can be used to seal the lesion after the technique.
The frequency of first permanent molar treatment for children with MIH is nearly 10 times greater compared to children without MIH. The available treatment modalities for MIH is extensive but the decision on which treatment should be used is complex and multi-factorial. Factors may include: condition severity, the patient’s dental age, the child/parent’s social background and expectations. There are treatment modalities available to manage children affected by MIH; however, the evidence supporting these modalities are still weak.
Preventive and management strategies include the following:
- Avoid sweet and acid foods. Even low sugar contained in fruit is bad for the teeth since it is the sugar/acid exposure time which erodes the teeth, not the amount of sugar.
- Modifying the pH of the food or beverage contributing to the problem, or changing lifestyle to avoid the food or beverage.
- Rinsing immediately after drinking or eating.
- Drinking through a straw
- Avoid abrasive forces. Use a soft bristled toothbrush and brush gently. Avoid brushing immediately after consuming acidic food and drink as teeth will be softened. Leave at least half an hour of time in between. Rinsing with water is better than brushing after consuming acidic foods and drinks.
- Using a remineralizing agent, such as sodium fluoride solution in the form of a fluoride mouthrinse, tablet, or lozenge, immediately before brushing teeth.
- Applying fluoride gels or varnishes to the teeth.
- Drinking milk or using other dairy products.
- Dentine bonding agents applied to areas of exposed dentin
- Use a neutralizing agent such as antacid tablets only as a last-resort. They have negative long-run effects.
- Treating the underlying medical disorder or disease.
This is the condition where the pulp is irreversibly damaged. The pulp can not recover from the insult and damage. For example, decay that has reached the pulp of the tooth introduces bacteria into the pulp. The pulp is still alive, but the introduction of bacteria into the pulp will not allow the pulp to heal and it will ultimately result in necrosis, or death, of the pulp tissue.
Symptoms associated with irreversible pulpitis may include dull aching, pain from hot or cold (though cold may actually provide relief) lingering pain after removal of a stimulus, spontaneous pain, or referred pain.
Clinical signs may include reduced response to electronic pulp testing and painful response to thermal stimuli. Today electronic pulp testers are rarely used for diagnosis of the reversibility of pulpitis due to their unreliable nature. Instead they should only be used to test the vitality of teeth.
The pulp of a tooth with irreversible pulpitis may not be left alone to heal. That is at least the general viewpoint of the dental profession, and not every dentist would agree that a dead tooth must be treated. No statistics are known but it is possible to have a trouble-free tooth after irreversible pulpitis, albeit a dead tooth. The tooth may be endodontically treated whereby the pulp is removed and replaced by gutta percha. An alternative is extraction of the tooth. This may be required if there is insufficient coronal tissue remaining for restoration once the root canal therapy has been completed.
Treatment may include smoothing, fluoride treatment, and crown restoration.
Endodontic intervention can help conserve the existing health of affected permanent teeth. It is difficult to perform an endodontic therapy on teeth that develop abscesses as a resultant of obliteration of the pulp chambers and root canals. An alternative to conventional therapy would be retrograde filling and periapical curettage. However, these therapies are not recommended for teeth with roots that are too short.
Bisphosphonates have recently been introduced to treat several bone disorders, which include osteogenesis imperfecta.
A recognized risk of this drug relevant to dental treatments is bisphosphonate-associated osteonecrosis of the jaw (BRONJ). Occurrences of this risk is associated with dental surgical procedures such as extractions.
Dental professionals should therefore proceed with caution when carrying out any dental procedures in patients who have Type 2 DI who may be on bisphosphonate drug therapy.
Preventive and restorative care are important as well as esthetics as a consideration. This ensures preservation of the patient's vertical face height between their upper and lower teeth when they bite together. The basis of treatment is standard throughout the different types of DI where prevention, preservation of occlusal face height, maintenance of function, and aesthetic needs are priority. Preventive efforts can limit pathology occurring within the pulp, which may render future endodontic procedures less challenging, with better outcomes.
- Challenges are associated with root canal treatment of teeth affected by DI due to pulp chamber and root canal obliteration, or narrowing of such spaces.
- If root canal treatment is indicated, it should be done in a similar way like with any other tooth. Further consideration is given for restoring the root-treated tooth as it has weaker dentine which may not withstand the restoration.
Preservation of occlusal face height may be tackled by use of stainless steel crowns which are advocated for primary teeth where occlusal face height may be hugely compromised due to loss of tooth tissue as a result of attrition, erosion of enamel.
In most cases, full-coverage crowns or veneers (composite/porcelain) are needed for aesthetic appearance, as well as to prevent further attrition. Another treatment option is bonding, putting lighter enamel on the weakened enamel of the teeth and with lots of treatments of this bonding, the teeth appear whiter to the eye, but the teeth on the inside and under that cover are still the same. Due to the weakened condition of the teeth, many common cosmetic procedures such as braces and bridges are inappropriate for patients with Dentinogenesis imperfecta and are likely to cause even more damage than the situation they were intended to correct.
Dental whitening (bleaching) is contraindicated although it has been reported to lighten the color of DI teeth with some success; however, because the discoloration is caused primarily by the underlying yellow-brown dentin, this alone is unlikely to produce normal appearance in cases of significant discoloration.
If there is considerable attrition, overdentures may be prescribed to prevent further attrition of remaining teeth and for preserving the occlusal face height.
Stainless steel crowns which also known as "hall crowns" can prevent tooth wear and maintain occlusal dimension in affected primary teeth. However, if demanded, composite facings or composite strip crowns can be added for aesthetic reasons.
Preventive and restorative dental care is very important as well as considerations for esthetic issues since the crown are yellow from exposure of dentin due to enamel loss. The main objectives of treatment is pain relief, preserving patient's remaining dentition, and to treat and preserve the patient's occlusal vertical height.
Many factors are to be considered to decide on treatment options such as the classification and severity of AI, the patient's social history, clinical findings etc. There are many classifications of AI but the general management of this condition is similar.
Full-coverage crowns are sometimes being used to compensate for the abraded enamel in adults, tackling the sensitivity the patient experiences. Usually stainless steel crowns are used in children which may be replaced by porcelain once they reach adulthood. These aid with maintaining occlusal vertical dimension.
Aesthetics may be addressed via placement of composite or porcelain veneers, depending on patient factors eg age. If the patient has primary or mixed dentition, lab-made composite veneers may be provided temporarily, to be replaced by permanent porcelain veneers once the patient has stabilized permanent dentition. The patient's oral hygiene and diet should be controlled as well as they play a factor in the success of retaining future restorations.
In the worst-case scenario, the teeth may have to be extracted and implants or dentures are required. Loss of nerves in the affected teeth may occur.
This is the condition where the pulp is inflamed and is actively responding to an irritant. This may include a carious lesion that has not reached the pulp.
Symptoms include transient pain or sensitivity resulting from many stimuli, notably hot, cold, sweet, water and touch. The pulp is still considered to be vital. This means that once the irritant is eliminated, usually by removal of decay and the placement of a restoration, that the pulp will return to its normal, healthy state.
Dental erosion can occur by non-extrinsic factors too. Intrinsic dental erosion is known as perimolysis, whereby gastric acid from the stomach comes into contact with the teeth. People with illnesses such as anorexia nervosa, bulimia, and gastroesophageal reflux disease (GERD) often suffer from this. GERD is quite common and an average of 7% of adults experience reflux daily. The main cause of GERD is increased acid production by the stomach. This is not exclusive to adults, as GERD and other gastrointestinal disorders may cause dental erosions in children. Rumination also may cause acid erosion.
A 2006 systematic review and a 2005 review by the UK Health Protection Agency each evaluated the evidence for various medical, psychological, behavioral, and alternative treatments for EHS and each found that the evidence-base was limited and not generalizable. The conclusion of the 2006 review stated: "The evidence base concerning treatment options for electromagnetic hypersensitivity is limited and more research is needed before any definitive clinical recommendations can be made. However, the best evidence currently available suggests that cognitive behavioural therapy is effective for patients who report being hypersensitive to weak electromagnetic fields."
As of 2005, WHO recommended that people presenting with claims of EHS be evaluated to determine if they have a medical condition that may be causing the symptoms the person is attributing to EHS, that they have a psychological evaluation, and that the person's environment be evaluated for issues like air or noise pollution that may be causing problems.
Few treatments are fully efficacious once lesions have appeared. The only effective form of treatment is preventitive - i.e. prevent further insect bites - so these techniques will also be discussed here. Treatments generally fall into one of the following categories:
1) Insecticides and Repellents: These may be applied to the horse or its environment. The most commonly used and effective are permethrins. and benzyl benzoate Citronella has been used, with variable effect. Some sources advocate draining of any stagnant water or pools, to reduce the local breeding potential of the insects. Midge numbers are often larger near water sources, for example ponds, bogs, and slow moving water. Moving the horse away from these areas may help to prevent further problems.
2) Barrier Techniques: Rugs etc., that prevent flies and midges settling on the animal's skin to bite. These include "Boett Rugs" and fly masks. In addition, thin screens may be placed over stable doors and windows to exclude biting insects. Stabling the horse at times of day when the midges are most prevalent is also quite effective.
3) Immunotherapy: A wide variety immunotherapy and desensitisation protocols have been trialled in attempts to reduce or modify the immune response, with considerable success rates. So far, there appear to a significant benefit in more than 80% of equine cases. This particular BioEos product is now available through The National Sweet Itch Centre in the UK and ProVet in the EU. The underlying immune modulation is now proven to shift the immune system from a Th2 to a Th1 mode. BioEos is a research and development company with worldwide patents derived from many years of research at University College London and the many applications are being developed for use in both human, agricultural and aquaculture treatments. Current clinical trials for the treatment of pancreatic cancers (Immodulon Therapeutics) and the treatment of other chronic immune deficiency disorders (ActinoPharma) are putting this research into practical effect.
4) Nutritional supplements: Various supplements may be effective in individuals, including fatty acid supplemantation and linseed oil. However, although owners perceived an improvement, this was not bourne out by objective statistical analysis.
5) Symptomatic Control: Control of symptoms to some degree can be achieved with antihistamines (especially hydroxyzine, and with corticosteroids, although the potential side effects (e.g. laminitis, immune suppression) make this a less preferred option. In addition, antibiotics may be required to manage any secondary infection.
6) Alternative Medicines: A wide variety of herbal, homeopathic and other alternative remedies have been suggested. Among the natural remedies suggested are sulfur, wild geranium (as the base for a shampoo), Lavender oil, Aloe vera (to reduce the itching).
Overall, the wide variety of treatments proposed leads to the conclusion that no one method is universally effective.
Enamel infractions are microcracks seen within the dental enamel of a tooth. They are commonly the result of dental trauma to the brittle enamel, which remains adherent to the underlying dentine. They can be seen more clearly when transillumination is used.
Enamel infractions are found more often in older teeth, as the accumulated trauma is greatest.
Enamel infractions can also be found as a result of iatrogenic damage inadvertently caused by instrumentation during dental treatments.
Chronic exposure to human nail dust is a serious occupational hazard that can be minimized by not producing such dust. Best practice is to avoid electrical debridement or burring of mycotic nails unless the treatment is necessary. When the procedure is necessary, it is possible to reduce exposure by using nail dust extractors, local exhaust, good housekeeping techniques, personal protective equipment such as gloves, glasses or goggles, face shields, and an appropriately fitted disposable respirators to protect against the hazards of nail dust and flying debris.
There have been numerous accounts of patients with "trichophyton" fungal infections and associated asthma, which further substantiates the likelihood of respiratory disease transmission to the healthcare provider being exposed to the microbe-laden nail dust In 1975, a dermatophyte fungal infection was described in a patient with severe tinea. The resulting treatment for mycosis improved the patient’s asthmatic condition. The antifungal treatment of many other "trichophyton" foot infections has alleviated symptoms of hypersensitivity, asthma, and rhinitis.
Dens invaginatus, also known as dens in dente ("tooth within a tooth") is a condition found in teeth where the outer surface folds inward. There are coronal and radicular forms, with the coronal form being more common.
Dens invaginatus is a malformation of teeth most likely resulting from an infolding of the dental papilla during tooth development or invagination of all layers of the enamel organ in dental papillae. Affected teeth show a deep infolding of enamel and dentine starting from the foramen coecum or even the tip of the cusps and which may extend deep into the root. Teeth most affected are maxillary lateral incisors and bilateral occurrence is not uncommon. The malformation shows a broad spectrum of morphologic variations and frequently results in early pulp necrosis. Root canal therapy may present severe problems because of the complex anatomy of the teeth. Cause, prevalence, classification, and therapeutic considerations including root canal therapy, apical surgery and prevention of pulpal involvement are reviewed.
Amelogenesis imperfecta (AI) is a congenital disorder that presents with a rare abnormal formation of the enamel or external layer of the crown of teeth, unrelated to any systemic or generalized conditions. Enamel is composed mostly of mineral, that is formed and regulated by the proteins in it. Amelogenesis imperfecta is due to the malfunction of the proteins in the enamel (ameloblastin, enamelin, tuftelin and amelogenin) as a result of abnormal enamel formation via amelogenesis.
People afflicted with amelogenesis imperfecta have teeth with abnormal color: yellow, brown or grey; this disorder can afflict any number of teeth of both dentitions. The teeth have a lower risk for dental cavities and are hypersensitive to temperature changes as well as rapid attrition, excessive calculus deposition, and gingival hyperplasia.
1-coronal
2-radicular
Types
- Type 1-That is confined to the crown
- Type 2-Extend below CEJ and ends in a blind sac that may or may not communicate with adjacent dental pulp
- Type 3-Extend to the root and perforate in the apex or lateral radicular area without communicating the pulp
The preferred treatment for many patients is desensitization to aspirin, undertaken at a clinic or hospital specializing in such treatment. In the United States, the Scripps Clinic in San Diego, CA, the Massachusetts General Hospital in Boston, MA, the Brigham and Women's Hospital in Boston, MA, National Jewish Hospital in Denver and Stanford University Adult ENT Clinic have allergists who routinely perform aspirin desensitization procedures for patients with aspirin-induced asthma. Patients who are desensitized then take a maintenance dose of aspirin daily and while on daily aspirin they often have reduced need for supporting medications, fewer asthma and sinusitis symptoms than previously, and many have an improved sense of smell. Desensitization to aspirin reduces the chance of nasal polyp recurrence, and can slow the regrowth of nasal polyps. Even patients desensitized to aspirin may continue to need other medications including nasal steroids, inhaled steroids, and leukotriene antagonists.
Leukotriene antagonists and inhibitors (montelukast, zafirlukast, and zileuton) are often helpful in treating the symptoms of aspirin-induced asthma. Some patients require oral steroids to alleviate asthma and congestion, and most patients will have recurring or chronic sinusitis due to the nasal inflammation.