Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Medical management of VHF patients may require intensive supportive care. Antiviral therapy with intravenous ribavirin may be useful in Bunyaviridae and Arenaviridae infections (specifically Lassa fever, RVF, CCHF, and HFRS due to Old World Hantavirus infection) and can be used only under an experimental protocol as investigational new drug (IND) approved by the U.S. Food and Drug Administration (FDA). Interferon may be effective in Argentine or Bolivian hemorrhagic fevers (also available only as IND).
With the exception of yellow fever vaccine neither vaccines nor experimental vaccines are readily available. Prophylactic (preventive) ribavirin may be effective for some bunyavirus and arenavirus infections (again, available only as IND).
VHF isolation guidelines dictate that all VHF patients (with the exception of dengue patients) should be cared for using strict contact precautions, including hand hygiene, double gloves, gowns, shoe and leg coverings, and faceshield or goggles. Lassa, CCHF, Ebola, and Marburg viruses may be particularly prone to nosocomial (hospital-based) spread. Airborne precautions should be utilized including, at a minimum, a fit-tested, HEPA filter-equipped respirator (such as an N-95 mask), a battery-powered, air-purifying respirator, or a positive pressure supplied air respirator to be worn by personnel coming within 1,8 meter (six feet) of a VHF patient. Multiple patients should be cohorted (sequestered) to a separate building or a ward with an isolated air-handling system. Environmental decontamination is typically accomplished with hypochlorite (e.g. bleach) or phenolic disinfectants.
There are no specific antiviral drugs for dengue; however, maintaining proper fluid balance is important. Treatment depends on the symptoms. Those who are able to drink, are passing urine, have no "warning signs" and are otherwise healthy can be managed at home with daily follow-up and oral rehydration therapy. Those who have other health problems, have "warning signs", or cannot manage regular follow-up should be cared for in hospital. In those with severe dengue care should be provided in an area where there is access to an intensive care unit.
Intravenous hydration, if required, is typically only needed for one or two days. In children with shock due to dengue a rapid dose of 20 mL/kg is reasonable. The rate of fluid administration is then titrated to a urinary output of 0.5–1 mL/kg/h, stable vital signs and normalization of hematocrit. The smallest amount of fluid required to achieve this is recommended.
Invasive medical procedures such as nasogastric intubation, intramuscular injections and arterial punctures are avoided, in view of the bleeding risk. Paracetamol (acetaminophen) is used for fever and discomfort while NSAIDs such as ibuprofen and aspirin are avoided as they might aggravate the risk of bleeding. Blood transfusion is initiated early in people presenting with unstable vital signs in the face of a "decreasing hematocrit", rather than waiting for the hemoglobin concentration to decrease to some predetermined "transfusion trigger" level. Packed red blood cells or whole blood are recommended, while platelets and fresh frozen plasma are usually not. There is not enough evidence to determine if corticosteroids have a positive or negative effect in dengue fever.
During the recovery phase intravenous fluids are discontinued to prevent a state of fluid overload. If fluid overload occurs and vital signs are stable, stopping further fluid may be all that is needed. If a person is outside of the critical phase, a loop diuretic such as furosemide may be used to eliminate excess fluid from the circulation.
Currently, no specific treatment for chikungunya is available. Supportive care is recommended, and symptomatic treatment of fever and joint swelling includes the use of nonsteroidal anti-inflammatory drugs such as naproxen, non-aspirin analgesics such as paracetamol (acetaminophen) and fluids. Aspirin is not recommended due to the increased risk of bleeding. Despite anti-inflammatory effects, corticosteroids are not recommended during the acute phase of disease, as they may cause immunosuppression and worsen infection.
Passive immunotherapy has potential benefit in treatment of chikungunya. Studies in animals using passive immunotherapy have been effective, and clinical studies using passive immunotherapy in those particularly vulnerable to severe infection are currently in progress. Passive immunotherapy involves administration of anti-CHIKV hyperimmune human intravenous antibodies (immunoglobulins) to those exposed to a high risk of chikungunya infection. No antiviral treatment for chikungunya virus is currently available, though testing has shown several medications to be effective "in vitro".
In those who have more than two weeks of arthritis, ribavirin may be useful. The effect of chloroquine is not clear. It does not appear to help acute disease, but tentative evidence indicates it might help those with chronic arthritis. Steroids do not appear to be an effective treatment. NSAIDs and simple analgesics can be used to provide partial symptom relief in most cases. Methotrexate, a drug used in the treatment of rheumatoid arthritis, has been shown to have benefit in treating inflammatory polyarthritis resulting from chikungunya, though the drug mechanism for improving viral arthritis is unclear.
Most people recover from West Nile virus without treatment. No specific treatment is available for WNV infection. In mild cases over the counter pain relievers can help ease mild headaches and muscle aches in adults. In severe cases treatment consists of supportive care that often involves hospitalization, intravenous fluids, pain medication, respiratory support, and prevention of secondary infections.
As for other flavivirus infections, no cure is known for yellow fever. Hospitalization is advisable and intensive care may be necessary because of rapid deterioration in some cases. Different methods for acute treatment of the disease have been shown not to be very successful; passive immunisation after emergence of symptoms is probably without effect. Ribavirin and other antiviral drugs, as well as treatment with interferons, do not have a positive effect in patients.
A symptomatic treatment includes rehydration and pain relief with drugs such as paracetamol (acetaminophen in the United States). Acetylsalicylic acid (aspirin) should not be given because of its anticoagulant effect, which can be devastating in the case of internal bleeding that can occur with yellow fever.
Tetracycline-group antibiotics (doxycycline, tetracycline) are commonly used. Chloramphenicol is an alternative medication recommended under circumstances that render use of tetracycline derivates undesirable, such as severe liver malfunction, kidney deficiency, in children under nine years and in pregnant women. The drug is administered for seven to ten days.
The treatment for bacillary angiomatosis is erythromycin given for three to four months.
Oropouche Fever has no cure or specific therapy so treatment is done by relieving the pain of the symptoms through symptomatic treatment. Certain oral analgesic and anti-inflammatory agents can help treat headaches and body pains. In extreme cases of oropouche fever the drug, Ribavirin is recommended to help against the virus. This is called antiviral therapy. Treatments also consist of drinking lots of fluids to prevent dehydration.
Asprin is not a recommended choice of drug because it can reduce blood clotting and may aggravate the hemorrhagic effects and prolong recovery time.
The infection is usually self-limiting and complications are rare. This illness usually lasts for about a week but in extreme cases can be prolonged. Patients usually recover fully with no long term ill effects. There have been no recorded fatalities resulting from oropouche fever.
There is no specific treatment for the disease. Pain killers and fluid replacement may be useful.
Prophylaxis by vaccination, as well as preventive measures like protective clothing, tick control, and mosquito control are advised. The vaccine for KFDV consists of formalin-inactivated KFDV. The vaccine has a 62.4% effectiveness rate for individuals who receive two doses. For individuals who receive an additional dose, the effectiveness increases to 82.9%. Specific treatments are not available.
African tick bite fever is usually mild, and most patients do not need more than at-home treatment with antibiotics for their illness. However, because so few patients with this infection visit a doctor, the best antibiotic choice, dose and length of treatment are not well known. Typically doctors treat this disease with antibiotics that have been used effectively for the treatment of other diseases caused by bacteria of similar species, such as Rocky Mountain Spotted Fever.
For mild cases, people are usually treated with one of the following:
- doxycycline
- chloramphenicol
- ciprofloxacin
If a person has more severe symptoms, like a high fever or serious headache, the infection can be treated with doxycycline for a longer amount of time. Pregnant women should not use doxycycline or ciprofloxacin as both antibiotics can cause problems in fetuses. Josamycin has been used effectively for treatment of pregnant women with other rickettsial diseases, but it is unclear if it has a role in the treatment of ATBF.
Prevention of sandfly bites, and control of sandflies and their breeding grounds with insecticides are the principal methods for prevention. Mosquito nets may not be sufficient to prevent sandfly bites.
Effective antibiotics include penicillin G, ampicillin, amoxicillin and doxycycline. In more severe cases cefotaxime or ceftriaxone should be preferred.
Glucose and salt solution infusions may be administered; dialysis is used in serious cases. Elevations of serum potassium are common and if the potassium level gets too high special measures must be taken. Serum phosphorus levels may likewise increase to unacceptable levels due to kidney failure.
Treatment for hyperphosphatemia consists of treating the underlying disease, dialysis where appropriate, or oral administration of calcium carbonate, but not without first checking the serum calcium levels (these two levels are related). Administration of corticosteroids in gradually reduced doses (e.g., prednisolone) for 7–10 days is recommended by some specialists in cases of severe hemorrhagic effects. Organ-specific care and treatment are essential in cases of kidney, liver, or heart involvement.
Appropriate antibiotic treatment should be started immediately when there is a suspicion of Rocky Mountain spotted fever on the basis of clinical and epidemiological findings. Treatment should not be delayed until laboratory confirmation is obtained. In fact, failure to respond to a tetracycline argues against a diagnosis of Rocky Mountain spotted fever. Severely ill patients may require longer periods before their fever resolves, especially if they have experienced damage to multiple organ systems. Preventive therapy in healthy patients who have had recent tick bites is not recommended and may, in fact, only delay the onset of disease.
Doxycycline (a tetracycline) (for adults at 100 milligrams every 12 hours, or for children under at 4 mg/kg of body weight per day in two divided doses) is the drug of choice for patients with Rocky Mountain spotted fever, being one of the only instances doxycycline is used in children. Treatment should be continued for at least three days after the fever subsides, and until there is unequivocal evidence of clinical improvement. This will be generally for a minimum time of five to ten days. Severe or complicated outbreaks may require longer treatment courses. Doxycycline/ tetracycline is also the preferred drug for patients with ehrlichiosis, another tick-transmitted infection with signs and symptoms that may resemble those of Rocky Mountain spotted fever.
Chloramphenicol is an alternative drug that can be used to treat Rocky Mountain spotted fever, specifically in pregnancy. However, this drug may be associated with a wide range of side effects, and careful monitoring of blood levels can be required.
There is no treatment currently available. The virus generally resolves itself within a five to seven day period. The use of steroids can actually cause a corneal microbial superinfection which then requires antimicrobial therapy to eliminate.
Relapsing fever is easily treated with a one- to two-week-course of antibiotics, and most people improve within 24 hours. Complications and death due to relapsing fever are rare.
Tetracycline-class antibiotics are most effective. These can, however, induce a Jarisch–Herxheimer reaction in over half those treated, producing anxiety, diaphoresis, fever, tachycardia and tachypnea with an initial pressor response followed rapidly by hypotension. Recent studies have shown tumor necrosis factor-alpha may be partly responsible for this reaction.
Treatment of acute Q fever with antibiotics is very effective and should be given in consultation with an infectious diseases specialist. Commonly used antibiotics include doxycycline, tetracycline, chloramphenicol, ciprofloxacin, ofloxacin, and hydroxychloroquine. Chronic Q fever is more difficult to treat and can require up to four years of treatment with doxycycline and quinolones or doxycycline with hydroxychloroquine.
Q fever in pregnancy is especially difficult to treat because doxycycline and ciprofloxacin are contraindicated in pregnancy. The preferred treatment is five weeks of co-trimoxazole.
Without treatment, the disease is often fatal. Since the use of antibiotics, case fatalities have decreased from 4–40% to less than 2%.
The drug most commonly used is doxycycline or tetracycline, but chloramphenicol is an alternative. Strains that are resistant to doxycycline and chloramphenicol have been reported in northern Thailand. Rifampicin and azithromycin are alternatives. Azithromycin is an alternative in children and pregnant women with scrub typhus, and when doxycycline resistance is suspected. Ciprofloxacin cannot be used safely in pregnancy and is associated with stillbirths and miscarriage.
Combination therapy with doxycycline and rifampicin is not recommended due to possible antagonism.
Prevention depends on control of and protection from the bites of the mosquito that transmits it. The World Health Organization recommends an Integrated Vector Control program consisting of five elements:
1. Advocacy, social mobilization and legislation to ensure that public health bodies and communities are strengthened;
2. Collaboration between the health and other sectors (public and private);
3. An integrated approach to disease control to maximize use of resources;
4. Evidence-based decision making to ensure any interventions are targeted appropriately; and
5. Capacity-building to ensure an adequate response to the local situation.
The primary method of controlling "A. aegypti" is by eliminating its habitats. This is done by getting rid of open sources of water, or if this is not possible, by adding insecticides or biological control agents to these areas. Generalized spraying with organophosphate or pyrethroid insecticides, while sometimes done, is not thought to be effective. Reducing open collections of water through environmental modification is the preferred method of control, given the concerns of negative health effects from insecticides and greater logistical difficulties with control agents. People can prevent mosquito bites by wearing clothing that fully covers the skin, using mosquito netting while resting, and/or the application of insect repellent (DEET being the most effective). However, these methods appear not to be sufficiently effective, as the frequency of outbreaks appears to be increasing in some areas, probably due to urbanization increasing the habitat of "A. aegypti". The range of the disease appears to be expanding possibly due to climate change.
Antibiotics to combat the streptococcal infection are the mainstay of treatment for scarlet fever. Prompt administration of appropriate antibiotics decreases the length of illness. Peeling of the outer layer of skin however will happen despite treatment. One of the main goals of treatment is to prevent the child from developing one of the suppurative or nonsuppurative complications, especially acute rheumatic fever. As long as antibiotics are started within 9 days, it is very unlikely for the child to develop acute rheumatic fever. Antibiotic therapy has not been shown to prevent the development of poststreptococcal glomerulonephritis. Another important reason for prompt treatment with antibiotics is the ability to prevent transmission of the infection between children. An infected individual is most likely to pass on the infection to another person during the first 2 weeks. A child is no longer contagious (able to pass the infection to another child) after 24 hours of antibiotics.
The antibiotic of choice is penicillin V which is taken by mouth in pill form. Children who are not able to take pills can be given amoxicillin which comes in a liquid form and is equally effective. Duration of treatment is 10 days. Benzathine Penicillin G can be given as a one time intramuscular injection as another alternative if swallowing pills is not possible. If the patient is allergic to the family of antibiotics which both penicillin and amoxicillin are a part of (beta-lactam antibiotics), a first generation cephalosporin is used. Cephalosporin antibiotics however can still cause adverse reactions in patients whose allergic reaction to penicillin is a Type 1 Hypersensitivity reaction. In those cases it is appropriate to choose clindamycin or erythromycin instead.
Tonsillectomy, although once a reasonable treatment for recurrent streptococcal pharyngitis, is not indicated. This is due to the fact that a person can still be infected with group A streptococcus without their tonsils.
There are no treatment modalities for acute and chronic chikungunya that currently exist. Majority of treatment plans use supportive and symptomatic care like analgesics for pain and anti-inflammatories for inflammation caused by arthritis. In acute stages of this virus, rest, antipyretics and analgesics are used to subside symptoms. Most use non-steroidal anti-inflammatory drugs (NSAIDs). In some cases, joint pain may resolve from treatment but stiffness remains.
There is currently no specific treatment for Zika virus infection. Care is supportive with treatment of pain, fever, and itching. Some authorities have recommended against using aspirin and other NSAIDs as these have been associated with hemorrhagic syndrome when used for other flaviviruses. Additionally, aspirin use is generally avoided in children when possible due to the risk of Reye syndrome.
Zika virus had been relatively little studied until the major outbreak in 2015, and no specific antiviral treatments are available as yet. Advice to pregnant women is to avoid any risk of infection so far as possible, as once infected there is little that can be done beyond supportive treatment.
Dengue infection's therapeutic management is simple, cost effective and successful in saving lives by adequately performing timely institutionalized interventions. Treatment options are restricted, while no effective antiviral drugs for this infection have been accessible to date. Patients in the early phase of the dengue virus may recover without hospitalization. However, ongoing clinical research is in the works to find specific anti-dengue drugs.
Vaccination is recommended for those traveling to affected areas, because non-native people tend to develop more severe illness when infected. Protection begins by the 10th day after vaccine administration in 95% of people, and had been reported to last for at least 10 years. WHO now states that a single dose of vaccination is sufficient to confer lifelong immunity against yellow fever disease." The attenuated live vaccine stem 17D was developed in 1937 by Max Theiler. The World Health Organization (WHO) recommends routine vaccinations for people living in affected areas between the 9th and 12th month after birth.
Up to one in four people experience fever, aches, and local soreness and redness at the site of injection. In rare cases (less than one in 200,000 to 300,000), the vaccination can cause yellow fever vaccine–associated viscerotropic disease, which is fatal in 60% of cases. It is probably due to the genetic morphology of the immune system. Another possible side effect is an infection of the nervous system, which occurs in one in 200,000 to 300,000 cases, causing yellow fever vaccine-associated neurotropic disease, which can lead to meningoencephalitis and is fatal in less than 5% of cases.
The Yellow Fever Initiative, launched by WHO in 2006, vaccinated more than 105 million people in 14 countries in West Africa. No outbreaks were reported during 2015. The campaign was supported by the GAVI Alliance, and governmental organizations in Europe and Africa. According to the WHO, mass vaccination cannot eliminate yellow fever because of the vast number of infected mosquitoes in urban areas of the target countries, but it will significantly reduce the number of people infected.
In March 2017, WHO launched a vaccination campaign in Brazil with 3.5 million doses from an emergency stockpile. In March 2017 the WHO recommended vaccination for travellers to certain parts of Brazil.