Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An experimental treatment, enzyme potentiated desensitization (EPD), has been tried for decades but is not generally accepted as effective. EPD uses dilutions of allergen and an enzyme, beta-glucuronidase, to which T-regulatory lymphocytes are supposed to respond by favoring desensitization, or down-regulation, rather than sensitization. EPD has also been tried for the treatment of autoimmune diseases but evidence does not show effectiveness.
A review found no effectiveness of homeopathic treatments and no difference compared with placebo. The authors concluded that, based on rigorous clinical trials of all types of homeopathy for childhood and adolescence ailments, there is no convincing evidence that supports the use of homeopathic treatments.
According to the NCCIH, the evidence is relatively strong that saline nasal irrigation and butterbur are effective, when compared to other alternative medicine treatments, for which the scientific evidence is weak, negative, or nonexistent, such as honey, acupuncture, omega 3's, probiotics, astragalus, capsaicin, grape seed extract, Pycnogenol, quercetin, spirulina, stinging nettle, tinospora or guduchi.
Allergen immunotherapy is useful for environmental allergies, allergies to insect bites, and asthma. Its benefit for food allergies is unclear and thus not recommended. Immunotherapy involves exposing people to larger and larger amounts of allergen in an effort to change the immune system's response.
Meta-analyses have found that injections of allergens under the skin is effective in the treatment in allergic rhinitis in children and in asthma. The benefits may last for years after treatment is stopped. It is generally safe and effective for allergic rhinitis and conjunctivitis, allergic forms of asthma, and stinging insects.
The evidence also supports the use of sublingual immunotherapy for rhinitis and asthma but it is less strong. For seasonal allergies the benefit is small. In this form the allergen is given under the tongue and people often prefer it to injections. Immunotherapy is not recommended as a stand-alone treatment for asthma.
Antihistamines such as diphenhydramine and chlorpheniramine are commonly used as treatment. People treated with H1 antihistamines exhibit reduced production of histamine and leukotrienes as well as downregulation of adhesion molecule expression on the vasculature which in turn attenuates allergic symptoms by 40–50%.
Dual-action medications are also prescribed frequently. Olopatadine (Patanol) and ketotifen fumarate (Alaway or Zaditor) both provide protection by acting as an antihistamine and a mast cell stabilizer together. Patanol is a prescription medication, whereas ketotifen fumarate is not.
A systematic review of 30 trials, with 17 different treatment comparisons found that all topical antihistamines and mast cell stabilizers included for comparison were effective in reducing symptoms of seasonal allergic conjunctivitis. There was not enough evidence to determine differences in long-term efficacy among the treatments.
Many of the eye drops can cause burning and stinging, and have side-effects. Proper eye hygiene can improve symptoms, especially with contact lenses. Avoiding precipitants, such as pollen or mold can be preventative.
Allergen immunotherapy (AIT) treatment involves administering doses of allergens to accustom the body to substances that are generally harmless (pollen, house dust mites), thereby inducing specific long-term tolerance. Allergy immunotherapy can be administered orally (as sublingual tablets or sublingual drops), or by injections under the skin (subcutaneous). Discovered by Leonard Noon and John Freeman in 1911, allergy immunotherapy represents the only causative treatment for respiratory allergies.
Experimental research has targeted adhesion molecules known as selectins on epithelial cells. These molecules initiate the early capturing and margination of leukocytes from circulation. Selectin antagonists have been examined in preclinical studies, including cutaneous inflammation, allergy and ischemia-reperfusion injury. There are four classes of selectin blocking agents: (i) carbohydrate based inhibitors targeting all P-, E-, and L-selectins, (ii) antihuman selectin antibodies, (iii) a recombinant truncated form of PSGL-1 immunoglobulin fusion protein, and (iv) small-molecule inhibitors of selectins. Most selectin blockers have failed phase II/III clinical trials, or the studies were ceased due to their unfavorable pharmacokinetics or prohibitive cost. Sphingolipids, present in yeast like "Saccharomyces cerevisiae" and plants, have also shown mitigative effects in animal models of gene knockout mice.
The preferred treatment for many patients is desensitization to aspirin, undertaken at a clinic or hospital specializing in such treatment. In the United States, the Scripps Clinic in San Diego, CA, the Massachusetts General Hospital in Boston, MA, the Brigham and Women's Hospital in Boston, MA, National Jewish Hospital in Denver and Stanford University Adult ENT Clinic have allergists who routinely perform aspirin desensitization procedures for patients with aspirin-induced asthma. Patients who are desensitized then take a maintenance dose of aspirin daily and while on daily aspirin they often have reduced need for supporting medications, fewer asthma and sinusitis symptoms than previously, and many have an improved sense of smell. Desensitization to aspirin reduces the chance of nasal polyp recurrence, and can slow the regrowth of nasal polyps. Even patients desensitized to aspirin may continue to need other medications including nasal steroids, inhaled steroids, and leukotriene antagonists.
Leukotriene antagonists and inhibitors (montelukast, zafirlukast, and zileuton) are often helpful in treating the symptoms of aspirin-induced asthma. Some patients require oral steroids to alleviate asthma and congestion, and most patients will have recurring or chronic sinusitis due to the nasal inflammation.
Corticosteroids: For years, there was no treatment for atopic eczema. Atopy was believed to be allergic in origin due to the patients’ extremely high serum IgE levels, but standard therapies at the time did not help. Oral prednisone was sometimes prescribed for severe cases. Wet wraps (covering the patients with gauze) were sometimes used in hospitals to control itching. However, the discovery of corticosteroids in the 1950s, and their subsequent incorporation in topical creams and ointments, provided a significant advancement in the treatment of atopic eczema and other conditions. Thus, the use of topical steroids avoided many of the undesirable side-effects of systemic administration of corticosteroids. Topical steroids control the itching and the rash that accompany atopic eczema. Side-effects of topical steroid use are plentiful, and the patient is advised to use topical steroids in moderation and only as needed.
Immune modulators: Pimecrolimus and tacrolimus creams and ointments became available in the 1980s and are sometimes prescribed for atopic eczema. They act by interfering with T cells but have been linked to the development of cancer.
Avoiding dry skin: Dry skin is a common feature of patients with atopic eczema (see also eczema for information) and can exacerbate atopic eczema.
Avoiding allergens and irritants: See eczema for information.
Antihistamines can alleviate some of the milder symptoms of an allergic reaction, but do not treat all symptoms of anaphylaxis. Antihistamines block the action of histamine, which causes blood vessels to dilate and become leaky to plasma proteins. Histamine also causes itchiness by acting on sensory nerve terminals. The most common antihistamine given for food allergies is diphenhydramine.
Epinephrine is another name for the hormone adrenaline, which is produced naturally in the body. An epinephrine injection is the first-line treatment for severe allergic reactions (anaphylaxis). If administered in a timely manner, epinephrine can reverse its effects.
Epinephrine relieves airway swelling and obstruction, and improves blood circulation; blood vessels are tightened and heart rate is increased, improving circulation to body organs. Epinephrine is available by prescription in an autoinjector.
Avoidance of antitoxins that may cause serum sickness is the best way to prevent serum sickness. Although, sometimes, the benefits outweigh the risks in the case of a life-threatening bite or sting. Prophylactic antihistamines or corticosteroids may be used concomitant with the antitoxin. Skin testing may be done beforehand in order to identify individuals who may be at risk of a reaction. Physicians should make their patients aware of the drugs or antitoxins to which they are allergic if there is a reaction. The physician will then choose an alternate antitoxin if it's appropriate or continue with prophylactic measures.
Often surgery is required to remove nasal polyps, although they typically recur, particularly if aspirin desensitization is not undertaken. 90% of patients have been shown to have recurrence of nasal polyps within 5 years after surgery, with 47% requiring revision surgery in the same time period.
With discontinuation of offending agent, symptoms usually disappear within 4–5 days.
Corticosteroids, antihistamines, and analgesics are the main line of treatment. The choice depends on the severity of the reaction.
Use of plasmapheresis has also been described.
Treatment for accidental ingestion of soy products by allergic individuals varies depending on the sensitivity of the person. An antihistamine such as diphenhydramine (Benadryl) may be prescribed. Sometimes prednisone will be prescribed to prevent a possible late phase Type I hypersensitivity reaction. Severe allergic reactions (anaphalaxis) may require treatment with an epinephrine pen, i.e., an injection device designed to be used by a non-healthcare professional when emergency treatment is warranted. A second dose is needed in 16-35% of episodes.
The culprit can be both a prescription drug or an over-the-counter medication.
Examples of common drugs causing drug eruptions are antibiotics and other antimicrobial drugs, sulfa drugs, nonsteroidal anti-inflammatory drugs (NSAIDs), biopharmaceuticals, chemotherapy agents, anticonvulsants, and psychotropic drugs. Common examples include photodermatitis due to local NSAIDs (such as piroxicam) or due to antibiotics (such as minocycline), fixed drug eruption due to acetaminophen or NSAIDs (Ibuprofen), and the rash following ampicillin in cases of mononucleosis.
Certain drugs are less likely to cause drug eruptions (rates estimated to be ≤3 per 1000 patients exposed). These include: digoxin, aluminum hydroxide, multivitamins, acetaminophen, bisacodyl, aspirin, thiamine, prednisone, atropine, codeine, hydrochlorothiazide, morphine, insulin, warfarin, and spironolactone.
Treatment for accidental ingestion of milk products by allergic individuals varies depending on the sensitivity of the person. An antihistamine such as diphenhydramine (Benadryl) may be prescribed. Sometimes prednisone will be prescribed to prevent a possible late phase Type I hypersensitivity reaction. Severe allergic reactions (anaphalaxis) may require treatment with an epinephrine pen, i.e., an injection device designed to be used by a non-healthcare professional when emergency treatment is warranted. A second dose is needed in 16-35% of episodes.
There is active research on trying oral immunotherapy (OIT) to desensitize people to egg allergens. A Cochrane Review concluded that OIT can desensitize people, but it remains unclear whether long-term tolerance develops after treatment ceases, and 69% of the people enrolled in the trials had adverse effects. They concluded there was a need for standardized protocols and guidelines prior to incorporating OIT into clinical practice. A second review noted that allergic reactions, up to anaphylaxis, can occur during OIT, and recommends this treatment not be routine medical practice. A third review limited its scope to trials of baked egg-containing goods such as bread or cake as a means of resolving egg allergy. Again, there were some successes, but also some severe allergic reactions, and the authors came down on the side of not recommending this as treatment.
Once a nickel allergy is detected, the best treatment is avoidance of nickel-releasing items. It is important to know the main items that can cause nickel allergy, which may be remembered using the mnemonic "BE NICKEL AWARE". The top 13 categories that contain nickel include beauty accessories, eyeglasses, money, cigarettes, clothes, kitchen and household, electronics and office equipment, metal utensils, aliment, jewelry, batteries, orthodontic and dental appliances, and medical equipment. Other than strict avoidance of items that release free nickel, there are other treatment options for reduction of exposure. The first step is to limit friction between skin and metallic items. Susceptible people may try to limit sweating while wearing nickel items, to reduce nickel release and thus decrease chances for developing sensitization and/or allergy. Another option is to shield electronics, metal devices, and tools with fabric, plastic, or acrylic coverings. Dermatological application tests has shown that barrier creams effectively prevent the symptoms of nickel allergy, such as the Nidiesque™.
There are test kits that can be very helpful to check for nickel release from items prior to purchasing. The ACDS providers can give a guidance list of safe items. In addition to avoidance, healthcare providers may prescribe additional creams or medications to help relieve the skin reaction.
The clinical expression of the dermatitis can be mitigated by avoidance of the allergen. Through compliance with avoidance measures, the immune system can become less stimulated. The key to avoidance is proper evaluation and detection of the inciting allergen. However, once the immune system registers the allergen, the recognition is permanent.
The first step in treating the condition is appropriate recognition of the clinical problem, followed by identification of the culprit chemical and the source of that chemical. Corticosteroid creams should be used carefully and according to the prescribed directions because when overused over longer periods of time they can cause thinning of the skin. Also, in some instances such as poison ivy dermatitis calamine lotion and cool oatmeal baths may relieve itching.
Usually, severe cases are treated with systemic corticosteroids which may be tapered gradually, with various dosing schedules ranging from a total of 12 – 20 days to prevent the recurrence of the rash (while the chemical allergen is still in the skin, up to 3 weeks, as well as a topical corticosteroid. Tacrolimus ointment or pimecrolimus cream can also be used additionally to the corticosteroid creams or instead of these. Oral antihistamines such as diphenhydramine or hydroxyzine may also be used in more severe cases to relieve the intense itching. Topical antihistamines are not advised as there might be a second skin reaction (treatment associated contact dermatitis) from the lotion itself.
The other symptoms caused by allergic contact dermatitis may be eased with cool compresses to stop the itching. It is vital for treatment success that the trigger be identified and avoided. The discomfort caused by the symptoms may be relieved by wearing smooth-textured cotton clothing to avoid frictional skin irritation or by avoiding soaps with perfumes and dyes.
Commonly, the symptoms may resolve without treatment in 2 to 4 weeks but specific medication may hasten the healing as long as the trigger is avoided. Also, the condition might become chronic if the allergen is not detected and avoided.
Treatment usually involves adrenaline (epinephrine), antihistamines, and corticosteroids.
If the entire body is involved, then anaphylaxis can take place, which is an acute, systemic reaction that can prove fatal.
Some patients and researchers have successfully treated solar urticaria with Omalizumab (trade name Xolair) which is commonly used to treat Idiopathic Urticaria. Omalizumab is a recombinant humanized monoclonal antibody against IgE. It acts by binding free IgE at the same site that IgE would bind to its high-affinity receptor (FcεRI) on mast cells, thereby reducing free IgE in the serum
This form of treatment is meant to reduce the intensity or altogether eliminate the allergic reactions people have by gradually increasing exposure to the form of radiation that brings about the reaction. In the case of solar urticaria, phototherapy and photochemotherapy are the two major desensitization treatments.
Phototherapy can be used for prevention. Exposure to a certain form of light or UV radiation enables the patient to build up a tolerance and outbreaks can be reduced. This type of treatment is generally conducted in the spring. However, the benefits of this therapy only last for two to three days.
Photochemotherapy, or PUVA, is considered superior to phototherapy because it produces a longer-lasting tolerance of the radiation that initiates the outbreak. When treatment first begins, the main goal is to build up the patient's tolerance to UVA radiation enough so that they can be outdoors without suffering an episode of solar urticaria. Therefore, treatments are regulated at three per week while constantly increasing the exposure to UVA radiation. Once the patient has reached an adequate level of desensitization, treatments are reduced to once or twice per week.
Underlying disease must be controlled to prevent exacerbation and worsening of ABPA, and in most patients this consists of managing their asthma or CF. Any other co-morbidities, such as sinusitis or rhinitis, should also be addressed.
Hypersensitivity mechanisms, as described above, contribute to progression of the disease over time and, when left untreated, result in extensive fibrosis of lung tissue. In order to reduce this, corticosteroid therapy is the mainstay of treatment (for example with prednisone); however, studies involving corticosteroids in ABPA are limited by small cohorts and are often not double-blinded. Despite this, there is evidence that acute-onset ABPA is improved by corticosteroid treatment as it reduces episodes of consolidation. There are challenges involved in long-term therapy with corticosteroids—which can induce severe immune dysfunction when used chronically, as well as metabolic disorders—and approaches have been developed to manage ABPA alongside potential adverse effects from corticosteroids.
The most commonly described technique, known as sparing, involves using an antifungal agent to clear spores from airways adjacent to corticosteroid therapy. The antifungal aspect aims to reduce fungal causes of bronchial inflammation, whilst also minimising the dose of corticosteroid required to reduce the immune system’s input to disease progression. The strongest evidence (double-blinded, randomized, placebo-controlled trials) is for itraconazole twice daily for four months, which resulted in significant clinical improvement compared to placebo, and was mirrored in CF patients. Using itraconazole appears to outweigh the risk from long-term and high-dose prednisone. Newer triazole drugs—such as posaconazole or voriconazole—have not yet been studied in-depth through clinical trials in this context.
Whilst the benefits of using corticosteroids in the short term are notable, and improve quality of life scores, there are cases of ABPA converting to invasive aspergillosis whilst undergoing corticosteroid treatment. Furthermore, in concurrent use with itraconazole, there is potential for drug interaction and the induction of Cushing syndrome in rare instances. Metabolic disorders, such as diabetes mellitus and osteoporosis, can also be induced.
In order to mitigate these risks, corticosteroid doses are decreased biweekly assuming no further progression of disease after each reduction. When no exacerbations from the disease are seen within three months after discontinuing corticosteroids, the patient is considered to be in complete remission. The exception to this rule is patients who are diagnosed with advanced ABPA; in this case removing corticosteroids almost always results in exacerbation and these patients are continued on low-dose corticosteroids (preferably on an alternate-day schedule).
Serum IgE can be used to guide treatment, and levels are checked every 6–8 week after steroid treatment commences, followed by every 8 weeks for one year. This allows for determination of baseline IgE levels, though it’s important to note that most patients do not entirely reduce IgE levels to baseline. Chest X-ray or CT scans are performed after 1–2 months of treatment to ensure infiltrates are resolving.
Treatment consists of two phases: stopping the urushiol contact that is causing the reaction (this must be done within minutes) and, later, reducing the pain and/or itching.
Primary treatment involves washing exposed skin thoroughly with soap, water, and friction as soon as possible after exposure is discovered. Soap or detergent is necessary because urushiol is an oil; friction, with a washcloth or something similar, is necessary because urushiol adheres strongly to the skin. Commercial removal preparations, which are available in areas where poison ivy grows, usually contain surfactants, such as the nonionic detergent Triton X-100, to solubilize urushiol; some products also contain abrasives.
The U.S. Food and Drug Administration recommends applying a wet compress or soaking the affected area in cool water; topical corticosteroids (available over-the-counter) or oral corticosteroids (available by prescription); and topical skin protectants, such as zinc acetate, zinc carbonate, zinc oxide, and calamine. Baking soda or colloidal oatmeal can relieve minor irritation and itching. Aluminium acetate, sometimes known as Burow's solution, can also ease the rash.
Showers or compresses using hot (but not scalding) water can relieve itching for up to several hours, though this "also taxes the skin's integrity, opening pores and generally making it more vulnerable", and is only useful for secondary treatment (not for cleaning urushiol from the skin, which should be done with cold water). People who have had a prior systemic reaction may be able to prevent subsequent exposure from turning systemic by avoiding heat and excitation of the circulatory system and applying moderate cold to any infected skin with biting pain.
Antihistamine and hydrocortisone creams, or oral antihistamines in severe cases, can alleviate the symptoms of a developed rash. Nonprescription oral diphenhydramine (U.S. trade name Benadryl) is the most commonly suggested antihistamine. Topical formulations containing diphenhydramine are also available but may further irritate the skin.
In cases of extreme symptoms, steroids such as prednisone or triamcinolone are sometimes administered to attenuate the immune response and prevent long-term skin damage, especially if the eyes are involved. Prednisone is the most commonly prescribed systemic treatment but can cause serious adrenal suppression, so it must be taken carefully and tapered off slowly. If bacterial secondary infection of affected areas occurs, antibiotics may also be necessary.
Scrubbing with plain soap and cold water will remove urushiol from skin if it is done within a few minutes of exposure. Many home remedies and commercial products (e.g., Tecnu, Zanfel) also claim to prevent urushiol rashes after exposure. A study that compared Tecnu ($1.25/oz.) with Goop Hand Cleaner or Dial Ultra Dishwashing Soap ($0.07/oz.) found that differences among the three—in the range of 56–70% improvement over no treatment—were nonsignificant ("P" > 0.05), but that improvement over no treatment was significant at the same level of confidence.
Further observations:
- Ordinary laundering with laundry detergent will remove urushiol from most clothing but not from leather or suede.
- The fluid from the resulting blisters does "not" spread urushiol to others.
- Blisters should be left unbroken during healing.
- Poison ivy and poison oak are still harmful when the leaves have fallen off, as the toxic residue is persistent, and exposure to any parts of plants containing urushiol can cause a rash at any time of the year.
- Ice, cold water, cooling lotions, and cold air do "not" help cure poison ivy rashes, but cooling can reduce inflammation and soothe the itch.
- Results for jewelweed as a natural agent for treatment are conflicting. Some studies indicate that it "failed to decrease symptoms of poison ivy dermatitis" [1980] and had "no prophylactic effect" [1997]. The juice of the leaves and stems of Impatiens capensis is a traditional Native American remedy for skin rashes, including poison ivy and such use has been supported by at least one peer-reviewed study, as recently as 2012.
Corticosteroids and other immunosuppressive medications have historically been employed to reduce pemphigus symptoms, yet steroids are associated with serious and long-lasting side effects and their use should be limited as much as possible. Intravenous immunoglobulin, mycophenolate mofetil, methotrexate, azathioprine, and cyclophosphamide have also been used with varying degrees of success.
An established alternative to steroids are monoclonal antibodies such as rituximab, which are increasingly being used as first-line treatment. In numerous case series, many patients achieve remission after one cycle of rituximab. Treatment is more successful if initiated early on in the course of disease, perhaps even at diagnosis. Rituximab treatment combined with monthly IV immunoglobulin infusions has resulted in long-term remission with no recurrence of disease in 10 years after treatment was halted. This was a small trial study of 11 patients with 10 patients followed to completion.
Few treatments are fully efficacious once lesions have appeared. The only effective form of treatment is preventitive - i.e. prevent further insect bites - so these techniques will also be discussed here. Treatments generally fall into one of the following categories:
1) Insecticides and Repellents: These may be applied to the horse or its environment. The most commonly used and effective are permethrins. and benzyl benzoate Citronella has been used, with variable effect. Some sources advocate draining of any stagnant water or pools, to reduce the local breeding potential of the insects. Midge numbers are often larger near water sources, for example ponds, bogs, and slow moving water. Moving the horse away from these areas may help to prevent further problems.
2) Barrier Techniques: Rugs etc., that prevent flies and midges settling on the animal's skin to bite. These include "Boett Rugs" and fly masks. In addition, thin screens may be placed over stable doors and windows to exclude biting insects. Stabling the horse at times of day when the midges are most prevalent is also quite effective.
3) Immunotherapy: A wide variety immunotherapy and desensitisation protocols have been trialled in attempts to reduce or modify the immune response, with considerable success rates. So far, there appear to a significant benefit in more than 80% of equine cases. This particular BioEos product is now available through The National Sweet Itch Centre in the UK and ProVet in the EU. The underlying immune modulation is now proven to shift the immune system from a Th2 to a Th1 mode. BioEos is a research and development company with worldwide patents derived from many years of research at University College London and the many applications are being developed for use in both human, agricultural and aquaculture treatments. Current clinical trials for the treatment of pancreatic cancers (Immodulon Therapeutics) and the treatment of other chronic immune deficiency disorders (ActinoPharma) are putting this research into practical effect.
4) Nutritional supplements: Various supplements may be effective in individuals, including fatty acid supplemantation and linseed oil. However, although owners perceived an improvement, this was not bourne out by objective statistical analysis.
5) Symptomatic Control: Control of symptoms to some degree can be achieved with antihistamines (especially hydroxyzine, and with corticosteroids, although the potential side effects (e.g. laminitis, immune suppression) make this a less preferred option. In addition, antibiotics may be required to manage any secondary infection.
6) Alternative Medicines: A wide variety of herbal, homeopathic and other alternative remedies have been suggested. Among the natural remedies suggested are sulfur, wild geranium (as the base for a shampoo), Lavender oil, Aloe vera (to reduce the itching).
Overall, the wide variety of treatments proposed leads to the conclusion that no one method is universally effective.
The Arthus reaction involves the in situ formation of antigen/antibody complexes after the intradermal injection of an antigen. If the animal/patient was previously sensitized (has circulating antibody), an Arthus reaction occurs. Typical of most mechanisms of the type III hypersensitivity, Arthus manifests as local vasculitis due to deposition of IgG-based immune complexes in dermal blood vessels. Activation of complement primarily results in cleavage of soluble complement proteins forming C5a and C3a, which activate recruitment of PMNs and local mast cell degranulation (requiring the binding of the immune complex onto FcγRIII), resulting in an inflammatory response. Further aggregation of immune complex-related processes induce a local fibrinoid necrosis with ischemia-aggravating thrombosis in the tissue vessel walls. The end result is a localized area of redness and induration that typically lasts a day or so.
Arthus reactions have been infrequently reported after vaccinations containing diphtheria and tetanus toxoid. The CDC's description:
Arthus reactions (type III hypersensitivity reactions) are rarely reported after vaccination and can occur after tetanus toxoid–containing or diphtheria toxoid–containing vaccines. An Arthus reaction is a local vasculitis associated with deposition of immune complexes and activation of complement. Immune complexes form in the setting of high local concentration of vaccine antigens and high circulating antibody concentration. Arthus reactions are characterized by severe pain, swelling, induration, edema, hemorrhage, and occasionally by necrosis. These symptoms and signs usually occur 4–12 hours after vaccination. ACIP has recommended that persons who experienced an Arthus reaction after a dose of tetanus toxoid–containing vaccine should not receive Td more frequently than every 10 years, even for tetanus prophylaxis as part of wound management.