Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no standard therapy for multicentric Castleman disease. Treatment modalities change based on HHV-8 status, so it is essential to determine HHV-8 status before beginning treatment. For HHV-8-associated MCD the following treatments have been used: rituximab, antiviral medications such as ganciclovir, and chemotherapy.
Treatment with the antiherpesvirus medication ganciclovir or the anti-CD20 B cell monoclonal antibody, rituximab, may markedly improve outcomes. These medications target and kill B cells via the B cell specific CD20 marker. Since B cells are required for the production of antibodies, the body's immune response is weakened whilst on treatment and the risk of further viral or bacterial infection is increased. Due to the uncommon nature of the condition there are not many large scale research studies from which standardized approaches to therapy may be drawn, and the extant case studies of individuals or small cohorts should be read with caution. As with many diseases, the patient's age, physical state and previous medical history with respect to infections may impact the disease progression and outcome.
Mycosis fungoides can be treated in a variety of ways. Common treatments include simple sunlight, ultraviolet light (mainly NB-UVB 312 nm), topical steroids, topical and systemic chemotherapies, local superficial radiotherapy, the histone deacetylase inhibitor vorinostat, total skin electron radiation, photopheresis and systemic therapies (e.g. interferons, retinoids, rexinoids) or biological therapies. Treatments are often used in combination.
In the “Stanford technique” of Total skin electron therapy the patient stands about 10 meters from a radiation source, with a large acrylic sheet in between to scatter the electrons across a broad area. Then the patient carefully assumes six different positions. In severe cases that progress to Sézary disease
Stanford University has been pioneering low-dose radiation (1/3 of the standard), followed by stem-cell transplantation without chemo, as a potential cure with promising results.
In 2010, the U.S. Food and Drug Administration granted orphan drug designation for naloxone lotion, a topical opioid receptor competitive antagonist used as a treatment for pruritus in cutaneous T-cell lymphoma.
For HHV-8-negative MCD (idiopathic MCD), the following treatments have been used: corticosteroids, rituximab, monoclonal antibodies against IL-6 such as tocilizumab and siltuximab, and the immunomodulator thalidomide.
Prior to 1996 MCD carried a poor prognosis of about 2 years, due to autoimmune hemolytic anemia and non-Hodgkin's lymphoma which may arise as a result of proliferation of infected cells. The timing of diagnosis, with particular attention to the difficulty of determining the cause of B symptoms without a CT scan and lymph node biopsy, may have a significant impact on the prognosis and risk of death. Left untreated, MCD usually gets worse and becomes increasingly difficult and unresponsive to current treatment regimens.
Siltuximab prevents it from binding to the IL-6 receptor, was approved by the U.S. Food and Drug Administration for the treatment of multicentric Castleman disease on April 23, 2014. Preliminary data suggest that treatment siltuximab may achieve tumour and symptomatic response in 34% of patients with MCD.
Other treatments for multicentric Castleman disease include the following:
- Corticosteroids
- Chemotherapy
- Thalidomide
Breast implant-associated ALCL is a recently recognized lymphoma and definitive management and therapy is under evaluation. However, it appears that removal of the implant, and resection of the capsule around the implant as well as evaluation by medical and surgical oncologists are cornerstones. Still under evaluation is the extent of capsulectomy: partial versus complete capsulectomy; similarly it is not defined the significance of replacement of the implant in the affected breast, or the removal of contralateral implant. Similarly, the value of radiation therapy and chemotherapy are under evaluation.
Currently, there is a drug, LDK378, undergoing Phase III clinical trials at Vanderbilt University that targets ALK positive small cell lung cancer, and has showed clinical promise in its previous clinical trials. Because approximately 70% of ALCL neoplasms are also ALK positive, there is hope that similar highly selective and potent ALK inhibitors may be used in the future to treat ALK positive cases of ALCL.
The goal of treatment is to improve the appearance of lesions since they are otherwise not serious and typically do not cause symptoms. Many treatment methods have been attempted however, complete removal is uncommon. No single treatment method has been shown to consistently work. Both medical and surgical treatments have been studied, each with variable success. Common destructive treatment methods include carbon dioxide lasers, dermabrasion, surgical excision, electrocoagulation and chemical peels. Many of these methods are very time consuming and require multiple treatment sessions.Carbon dioxide lasers are the most commonly practiced method; however, can cause thermal damage leading to scarring in the area. Medical therapies include topical atropine, topical retinoids and oral tranilast.
The most common adverse side effects include redness, skin discoloration and pain. Other side effects include blistering and scarring.
Incision drainage with proper evacuation of the fluid followed by anti-tubercular medication.
Radiotherapy is a valid first option for "MALT lymphoma". It provides local control and potential cure in localized gastric stage IE and II 1E disease with 5-year EFS of 85-100% reported in retrospective studies. However, the irradiation field is potentially large as it must include the whole stomach, which can vary greatly in size and shape. Irradiation techniques have improved considerably in the last 20 years, including treating the patient in a fasting state, decreasing the irradiated field and required dose. The moderate dose of 30 Gray (Gy) of involved-field radiotherapy administered in 15 fractions (doses) can be associated with tolerable toxicity and excellent outcomes. Hence, radiotherapy is the preferred approach for local disease where antibiotic therapy has failed, or is not indicated. Evidence also suggests that radiotherapy can be utilized to control localized relapses outside the original radiation field.
In general, there is no treatment available for CMTC, although associated abnormalities can be treated. In the case of limb asymmetry, when no functional problems are noted, treatment is not warranted, except for an elevation device for the shorter leg.
Laser therapy has not been successful in the treatment of CMTC, possibly due to the presence of many large and deep capillaries and dilated veins. Pulsed-dye laser and long-pulsed-dye laser have not yet been evaluated in CMTC, but neither argon laser therapy nor YAG laser therapy has been helpful.
When ulcers develop secondary to the congenital disease, antibiotic treatment such as oxacillin and gentamicin administered for 10 days has been prescribed. In one study, the wound grew Escherichia coli while blood cultures were negative.
Since this lesion is usually a complication of long standing otitis media, it is important to use an appropriate antibiotic therapy regimen. If the patient fails first line antibiotics, then second-line therapies should be employed, especially after appropriate culture and sensitivity testing. Surgery may be required if there is extension into the mastoid bone, or if a concurrent cholesteatoma is identified during surgery or biopsy. In general, patients have an excellent outcome after appropriate therapy.
"MALT lymphoma" is exquisitely immunotherapy sensitive. Chemotherapy is reserved for those uncommon patients with disseminated disease at presentation or lack of response to local treatment. Rituximab, the anti-CD20 chimeric antibody, is a key component of therapy. Responses vary from 55% to 77% with monotherapy and 100% in combination with chemotherapy. Oral alkylating agents such as cyclophosphamide or chlorambucil have been administered for a median duration of 12 months with high rates of disease control (CR up to 75%) but appear not to be active in t(11;18) disease. The purine nucleoside analogs fludarabine and cladribine also demonstrate activity, the latter conferring a CR rate of 84% (100% in those with gastric primaries) in a small study. A pivotal study of rituximab plus chlorambucil compared with chlorambucil alone (IELSG-19 study, n = 227) demonstrated a significantly higher CR rate (78% vs. 65%; p = 0.017) and 5-year EFS (68% vs. 50%; p = 0.024) over chlorambucil alone. However, 5-year OS was not improved (88% in both arms). First-line treatment of choice is generally rituximab in combination with single alkylating agents or fludarabine, or a combination of all three drugs. The final results of this study, including the later addition of a rituximab-alone arm, are pending.
Two other genetic alterations are known:
- t(1;14)(p22;q32), which deregulates BCL10, at the locus 1p22.
- t(14;18)(q32;q21), which deregulates MALT1, at the locus 18q21.
These seem to turn on the same pathway as API2-MLT (i.e., that of NF-κB). They both act upon IGH, which is at the locus 14q32.
Treatment is directed toward the underlying cause. However, in primary eosinophilia, or if the eosinophil count must be lowered, corticosteroids such as prednisone may be used. However, immune suppression, the mechanism of action of corticosteroids, can be fatal in patients with parasitosis.
Experimental treatments include Resimmune or A-dmDT390-bisFv(UCHT1) which is an anti-T cell immunotoxin in a Phase II clinical trial.
Mogamulizumab (KW-0761) had a phase 3 clinical trial for Relapsed/Refractory CTCL (including mycosis fungoides). After preliminary results on mycosis fungoides in 2017 the US FDA granted it a priority review for CTCL.
If a patient has the symptoms like leukemia, such as persistent fever or difficulty of hemostais, he has to see the doctors.
BAL is very hard to treat. Most of patients receive treatment based on the morphology of blasts and get AML or ALL induction chemotherapy. The induction drug for AML such as cytarabine and anthracycline, drug for ALL such as prednisolone, dexamethasone, vincristine, asparaginase or daunorubicin is common for BAL remission induction therapy. Recently, researches showed that using both myeloid and lymphoid induction therapy may be better for prognosis.
Chemotherapy is strong side effects such as typhlitis, gastrointestinal distress, anemia, fatigue, hair loss, nausea and vomiting, etc. Thus, the different dose and times of chemotherapy for different individuals is important.
If the patients enter fully remission, the consolidation with stem cell transplantation is highly recommended.
Simple surgical excision is considered curative. Rare recurrences have been reported.
Natural killer (NK) cell therapy is used in pediatrics for children with relapsed lymphoid leukemia. These patients normally have a resistance to chemotherapy, therefore, in order to continue on, must receive some kind of therapy. In some cases, NK cell therapy is a choice.
NK cells are known for their ability to eradicate tumor cells without any prior sensitization to them. One problem when using NK cells in order to fight off lymphoid leukemia is the fact that it is hard to amount enough of them to be effective. One can receive donations of NK cells from parents or relatives through bone marrow transplants. There are also the issues of cost, purity and safety. Unfortunately, there is always the possibility of Graft vs host disease while transplanting bone marrow.
NK cell therapy is a possible treatment for many different cancers such as Malignant glioma.
Jessner lymphocytic infiltrate of the skin is a cutaneous condition characterized by a persistent papular and plaque-like skin eruption which can occur on the neck, face and back and may re-occur. This is an uncommon skin disease and is a benign collection of lymph cells. Its cause is not known and can be hereditary. It is named for Max Jessner. It is thought to be equivalent to lupus erythematosus tumidus.
It can occur as the result of ACE inhibitors and a number of medications used to treat multiple sclerosis including glatiramer acetate.
If treatment has been successful ("complete" or "partial remission"), a person is generally followed up at regular intervals to detect recurrence and monitor for "secondary malignancy" (an uncommon side-effect of some chemotherapy and radiotherapy regimens—the appearance of another form of cancer). In the follow-up, which should be done at pre-determined regular intervals, general anamnesis is combined with complete blood count and determination of lactate dehydrogenase or thymidine kinase in serum.
Treatment can occasionally consist of "watchful waiting" (e.g. in CLL) or symptomatic treatment (e.g. blood transfusions in MDS). The more aggressive forms of disease require treatment with chemotherapy, radiotherapy, immunotherapy and—in some cases—a bone marrow transplant. The use of rituximab has been established for the treatment of B-cell–derived hematologic malignancies, including follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL).
Standard, and most effective, therapy to date is glandular sialadenectomy, which is associated with fairly low operative morbidity; however, in recent times, the administration of steroid (which can shrink the inflammatory lesion and is known to reduce serum IgG4 values) has been considered favorably, and may be useful in younger patients or those who refuse surgery.
Cutaneous lymphoid hyperplasia refers to a groups of benign cutaneous disorders characterized by collections of lymphocytes, macrophages, and dendritic cells in the skin. Conditions included in this groups are:
- Cutaneous lymphoid hyperplasia with nodular pattern, a condition of the skin characterized by a solitary or localized cluster of asymptomatic erythematous to violaceous papules or nodules
- Cutaneous lymphoid hyperplasia with bandlike and perivascular patterns, a condition of the skin characterized by skin lesions that clinically resemble mycosis fungoides
Lymphocyte-variant hypereosinophilia usually takes a benign and indolent course. Long term treatment with corticosteroids lowers blood eosinophil levels as well as suppresses and prevents complications of the disease in >80% of cases. However, signs and symptoms of the disease recur in virtually all cases if corticosteroid dosages are tapered in order to reduce the many adverse side effects of corticosteroids. Alternate treatments used to treat corticosteroid resistant disease or for use as corticosteroid-sparing substitutes include interferon-α or its analog, Peginterferon alfa-2a, Mepolizumab (an antibody directed against IL-5), Ciclosporin (an Immunosuppressive drug), imatinib (an inhibitor of tyrosine kinases; numerous tyrosine kinase cell signaling proteins are responsible for the growth and proliferation of eosinophils {see clonal eosinophilia}), methotrexate and Hydroxycarbamide (both are chemotherapy and immunosuppressant drugs), and Alemtuzumab (a antibody that binds to the CD52 antigen on mature lymphocytes thereby marking them for destruction by the body). The few patients who have been treated with these alternate drugs have exhibited good responses in the majority of instances. Reslizumab, a newly developed antibody directed against interleukin 5 that has been successfully used to treat 4 patients with the hypereosinophilic syndrome, may also be of use for lymphocyte-variant eosinophilia. Patients suffering minimal or no disease complications have gone untreated.
In 10% to 25% of patients, mostly 3 to 10 years after initical diagnosis, the indolent course of lymphocyte-variant hypereosinophilia changes. Patients exhibit rapid increases in lymphadenopathy, spleen size, and blood cell numbers, some cells of which take on the appearance of immature and/or malignant cells. Their disease soon thereafter escalates to an angioimmunoblastic T-cell lymphoma, peripheral T cell lymphoma, Anaplastic large-cell lymphoma (which unlike most lymphomas of this type is Anaplastic lymphoma kinase-negative), or Cutaneous T cell lymphoma. The malignantly transformed disease is aggressive and has a poor prognosis. Recommended treatment includes chemotherapy with Fludarabine, Cladribine, or the CHOP combination of drugs followed by bone marrow transplantation.
ANKL is treated similarly to most B-cell lymphomas. Anthracycline-containing chemotherapy regimens are commonly offered as the initial therapy. Some patients may receive a stem cell transplant.
Most patients will die 2 years after diagnosis.
Follicular hyperplasia (or "reactive follicular hyperplasia" or "lymphoid nodular hyperplasia") is a type of lymphoid hyperplasia. It is caused by a stimulation of the B cell compartment. It is caused by an abnormal proliferation of secondary follicles and occurs principally in the cortex without broaching the lymph node capsule. The follicles are cytologically polymorphous, are often polarized, and vary in size and shape. Follicular hyperplasia is distinguished from follicular lymphoma in its polyclonality and lack of bcl-2 protein expression, whereas follicular lymphoma is monoclonal, and does express bcl-2).
Lymphoid hyperplasia is the rapid growth proliferation of normal cells that resemble lymph tissue.
The prognosis varies according with the type of ALCL. During treatment, relapses may occur but these typically remain sensitive to chemotherapy.
Those with ALK positivity have better prognosis than ALK negative ALCL. It has been suggested that ALK-negative anaplastic large-cell lymphomas derive from other T-cell lymphomas that are morphologic mimics of ALCL in a final common pathway of disease progression. Whereas ALK-positive ALCLs are molecularly characterized and can be readily diagnosed, specific immunophenotypic or genetic features to define ALK-negative ALCL are missing and their distinction from other T-cell non-Hodgkin lymphomas (T-NHLs) remains controversial, although promising diagnostic tools for their recognition have been developed and might be helpful to drive appropriate therapeutic protocols.
Systemic ALK+ ALCL 5-year survival: 70–80%.
Systemic ALK- ALCL 5-year survival: 15–45%.
Primary Cutaneous ALCL: Prognosis is good if there is not extensive involvement regardless of whether or not ALK is positive with an approximately 90% 5-year survival rate.
Breast implant-associated ALCL has an excellent prognosis when the lymphoma is confined to the fluid or to the capsule surrounding the breast implant. This tumor can be recurrent and grow as a mass around the implant capsule or can extend to regional lymph nodes if not properly treated.