Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment for Jackson–Weiss syndrome can be done through surgery for some facial features and feet. Secondary complications such as hydrocephalus or cognitive impairment, can be averted via prompt surgery.
There is no ‘standard treatment’ for people with CFND due to the large variations in phenotypic expression. Each patient needs to be assessed and treated based on their specific presentation in order to restore the aesthetic and functional balance.
Surgical corrections for the main symptoms;
- Craniosynostosis correction: The preferred age for this procedure is between 6–9 months of age. Performing this surgery at such an early age can limit the further development of facial asymmetry, if the asymmetry is caused by the craniosynostosis, and prevents prolonged elevated intracranial pressure (ICP). However, the data for the exact risk of an elevated intracranial pressure for patients with CFND is lacking in the published literature. The surgery involves a frontal bone advancement in combination with remodellation of the supraorbital rim.
- Orbital hypertelorism: It is preferred to wait with this treatment until the age of 5–8 years old, after permanent dentition. The procedures that can be performed are the facial bipartition and the box osteotomy. Facial bipartition is the more preferable choice as there are less additional corrections needed, as well as providing a more stable long-term result after treatment. After the correction of the orbitas, the medial corners of the eyes are put more into a horizontal line.
- Nasal deformity correction: The correction of the broad nasal base is simultaneously done with the orbital hypertelorism repair. This is for good alignment of the eyes with the nose for the best aesthetic result. A bifid nose tip will only be treated at the age of 18, when the patient's skeleton has fully matured.
There are several options for treatment of mouth anomalies like Tessier cleft number 2-3-7 . These clefts are also seen in various syndromes like Treacher Collins syndrome and hemifacial microsomia, which makes the treatment much more complicated. In this case, treatment of mouth anomalies is a part of the treatment of the syndrome.
Horseshoe kidney, also known as "ren arcuatus" (in Latin), renal fusion or super kidney, is a congenital disorder affecting about 1 in 600 people, more common in men.
In this disorder, the patient's kidneys fuse together to form a horseshoe-shape during development in the womb. The fused part is the isthmus of the horseshoe kidney.
Fusion abnormalities of the kidney can be categorized into two groups: horseshoe kidney and crossed fused ectopia. The 'horseshoe kidney' is the most common renal fusion anomaly.
The physical abnormalities resulting from SCS are typically mild and only require a minor surgical procedure or no procedure at all. One of the common symptoms of SCS is the development of short (brachydactyly), webbed fingers and broad toes (syndactyly). These characteristics do not cause any problems to the function of the hands or feet, and thus, no medical procedure is required to fix the abnormalities, unless the patient requests it. Webbing of the fingers may affect the base of the fingers, resulting in delayed hand growth during childhood, but this contributes no functional impairments. Sometimes, individuals with SCS develop broad toes because the bones at the ends of the toes are duplicating themselves. This is especially seen in the big toe, but requires no surgical intervention because it doesn't negatively affect the overall function of the foot. Individuals with these toe abnormalities walk normally and can wear normal footwear.
In more severe cases, frequent surgeries and clinical monitoring are required throughout development. A child born with asymmetrical unilateral coronal synostosis should undergo cranioplasty within its first year of life in order to prevent increased intracranial pressure and to prevent progressive facial asymmetry. Cranioplasty is a surgical procedure to correct prematurely fused cranial bones. The surgery acts to reconstruct and reposition the bones and sutures in order to promote the most normal growth. Cranioplasty is necessary in order to continue to grow and is important for two main reasons. First of all, the skull needs to be able to accommodate the growing brain following childbirth, which it can't because the skull doesn't grow as fast as the brain as long as the sutures remain fused. This results in an increase in pressure surrounding the brain and inhibits the brain from growing, causing the individual to experience significant problems, and if left untreated can eventually lead to death. Secondly, cranioplasty may be required for appearance purposes. This is especially the case in individuals with asymmetrical unilateral coronal synostosis, which requires reconstructive surgery of the face and skull. If cranioplasty is not performed, especially in individuals with unilateral coronal synostosis, then facial asymmetry will get worse and worse over time, which is why cranioplasty should be performed as soon as possible.
Surgery may also be required in individuals with vision problems. Vision problems usually arise due to a lack of space in the eye orbit and skull because of the abnormal bone structure of the face. Decreased space may also lead to abnormal or missing tear ducts and nerve damage. Reconstructive surgery is usually required in order to increase cranial space, correct tear duct stenosis, and/or correct ptosis of the eyelids in order to prevent amblyopia (lazy eye).
Midfacial surgery may also be required during early childhood to correct respiratory problems, dental malocclusion, and swallowing difficulties. A cleft palate is also corrected with surgery, and may involve the use of tympanostomy tubes. If needed, an individual will undergo orthognathic treatment and/or orthodontic treatment after facial development is complete. Since hearing loss is frequently associated with SCS, it is recommended that audiology screening persist throughout childhood.
After cranial reconstructive surgery, a child may be required to wear a molding helmet or some other form of head protection until the cranial bones set into place. This typically takes about three months and depends on the child's age and the severity of the condition. Following recovery, individuals with SCS look and act completely normal, so no one would even be able to tell that they have SCS.
The majority of patients remain symptom free and able to maintain binocularity with only a slight face turn. Amblyopia is uncommon and, where present, rarely dense. This can be treated with occlusion, and any refractive error can also be corrected.
Duane syndrome cannot be cured, as the "missing" cranial nerve cannot be replaced, and traditionally there has been no expectation that surgery will result in any increase in the range of eye movement. Surgical intervention, therefore, has only been recommended where the patient is unable to maintain binocularity, where they are experiencing symptoms, or where they are forced to adopt a cosmetically unsightly or uncomfortable head posture in order to maintain binocularity. The aims of surgery are to place the eye in a more central position and, thus, place the field of binocularity more centrally also, and to overcome or reduce the need for the adoption of an abnormal head posture. Occasionally, surgery is not needed during childhood, but becomes appropriate later in life, as head position changes (presumably due to progressive muscle contracture).
Surgical approaches include:
- Medial rectus recession in the involved eye or both eyes. By weakening the medial rectus muscles this procedure improves the crossed-eye appearance but does not improve outward eye movements (abductions).
- Morad et al. showed improved abduction after modest unilateral medial rectus recession and lateral rectus resection in a subgroup of patients with mild eye retraction and good adduction before surgery.
- Lateral transposition of the vertical muscles described by Rosenbaum has been shown to improve range of movement of the eye. The surgical procedure produces 40-65 degrees of binocular field. Orbital wall fixation of the lateral rectus muscle (muscle is disinserted and reattached to lateral orbital wall) is recommended an effective method to inactivate a lateral rectus muscle in cases of marked anomalous innervation and severe cocontraction.
There is no single course of medical treatment or cure for Möbius syndrome. Treatment is supportive and in accordance with symptoms. If they have difficulty nursing, infants may require feeding tubes or special bottles to maintain sufficient nutrition. Physical, occupational, and speech therapy can improve motor skills and coordination and can lead to better control of speaking and eating abilities. Often, frequent lubrication with eye drops is sufficient to combat dry eye that results from impaired blinking. Surgery can correct crossed eyes, protect the cornea via tarsorraphy, and improve limb and jaw deformities. Sometimes called smile surgery by the media, muscle transfers grafted from the thigh to the corners of the mouth can be performed to provide the ability to smile. Although "smile surgery" may provide the ability to smile, the procedure is complex and can take twelve hours for each side of the face. Also, the surgery cannot be considered a "cure" for Möbius syndrome, because it does not improve the ability to form other facial expressions.
There is currently no treatment or cure for Waardenburg syndrome. The symptom most likely to be of practical importance is deafness, and this is treated as any other irreversible deafness would be. In marked cases there may be cosmetic issues. Other abnormalities (neurological, structural, Hirschsprung disease) associated with the syndrome are treated symptomatically.
Crossed dystopia (syn.unilateral fusion cross fused renal ectopia) is a rare form of renal ectopia where both kidneys are on the same side of the spine. In many cases, the two kidneys are fused together, yet retain their own vessels and ureters. The ureter of the lower kidney crosses the midline to enter the bladder on the contralateral side. Both renal pelvis can lie one above each other medial to the renal parenchyma (unilateral long kidney) or the pelvis of the crossed kidney faces laterally (unilateral "S" shaped kidney). Urogram is diagnostic.
The anomaly can be diagnosed through ultrasound of urography, but surgical intervention is only necessary if there are other complications, such as tumors or pyelonephritis.
It is essential that a child with strabismus is presented to the ophthalmologist as early as possible for diagnosis and treatment in order to allow best possible monocular and binocular vision to develop. Initially, the patient will have a full eye examination to identify any associated pathology, and any glasses required to optimise acuity will be prescribed – although infantile esotropia is not typically associated with refractive error. Studies have found that approximately 15% of infantile esotropia patients have accommodative esotropia. For these patients, antiaccommodative therapy (with spectacles) is indicated before any surgery as antiaccommodative therapy fully corrects their esotropia in many cases and significantly decreases their deviation angle in others.
Amblyopia will be treated via occlusion treatment (using patching or atropine drops) of the non-squinting eye with the aim of achieving full alternation of fixation. Management thereafter will be surgical. As alternative to surgery, also botulinum toxin therapy has been used in children with infantile esotropia. Furthermore, as accompaniment to ophtalmologic treatment, craniosacral therapy may be performed in order to relieve tension ("see also:" Management of strabismus).
Examples of possible complications include shunt malfunction, shunt failure, and shunt infection, along with infection of the shunt tract following surgery (the most common reason for shunt failure is infection of the shunt tract). Although a shunt generally works well, it may stop working if it disconnects, becomes blocked (clogged), infected, or it is outgrown. If this happens the cerebrospinal fluid will begin to accumulate again and a number of physical symptoms will develop (headaches, nausea, vomiting, photophobia/light sensitivity), some extremely serious, like seizures. The shunt failure rate is also relatively high (of the 40,000 surgeries performed annually to treat hydrocephalus, only 30% are a patient's first surgery) and it is not uncommon for patients to have multiple shunt revisions within their lifetime.
Another complication can occur when CSF drains more rapidly than it is produced by the choroid plexus, causing symptoms - listlessness, severe headaches, irritability, light sensitivity, auditory hyperesthesia (sound sensitivity), nausea, vomiting, dizziness, vertigo, migraines, seizures, a change in personality, weakness in the arms or legs, strabismus, and double vision - to appear when the patient is vertical. If the patient lies down, the symptoms usually vanish quickly. A CT scan may or may not show any change in ventricle size, particularly if the patient has a history of slit-like ventricles. Difficulty in diagnosing overdrainage can make treatment of this complication particularly frustrating for patients and their families. Resistance to traditional analgesic pharmacological therapy may also be a sign of shunt overdrainage "or" failure.
The diagnosis of cerebrospinal fluid buildup is complex and requires specialist expertise. Diagnosis of the particular complication usually depends on when the symptoms appear - that is, whether symptoms occur when the patient is upright or in a prone position, with the head at roughly the same level as the feet.
While most cases of horseshoe kidneys are asymptomatic and discovered upon autopsy, the condition may increase the risk for:
- Kidney obstruction – abnormal placement of ureter may lead to obstruction and dilation of the kidney.
- Kidney infections – associated with vesicoureteral reflux.
- Kidney stones – deviant orientation of kidneys combined with slow urine flow and kidney obstruction may lead to kidney stones.
- Kidney cancer – increased risk of renal cancer, especially Wilms' tumor, transitional cell carcinoma, and an occasional case report of carcinoid tumor. Despite increased risk, the overall risk is still relatively low.
The prevalence of horseshoe kidneys in females with Turner Syndrome is about 15%.
It can be associated with trisomy 18.
It can be associated with venous anomalies like left sided IVC 9.
There is no single strategy for treatment of facial clefts, because of the large amount of variation in these clefts. Which kind of surgery is used depends on the type of clefting and which structures are involved. There is much discussion about the timing of reconstruction of bone and soft tissue. The problem with early reconstruction is the recurrence of the deformity due to the intrinsic restricted growth. This requires additional operations at a later age to make sure all parts of the face are in proportion. A disadvantage of early bone reconstruction is the chance to damage the tooth germs, which are located in the maxilla, just under the orbit. The soft tissue reconstruction can be done at an early age, but only if the used skin flap can be used again during a second operation. The timing of the operation depends on the urgency of the underlying condition. If the operation is necessary to function properly, it should be done at early age. The best aesthetic result is achieved when the incisions are positioned in areas which attract the least attention (they cover up the scars). If, however, the function of a part of the face isn’t damaged, the operation depends on psychological factors and the facial area of reconstruction.
The treatment plan of a facial cleft is planned right after diagnosis. This plan includes every operation needed in the first 18 years of the patients life to reconstruct the face fully.
In this plan, a difference is made between problems that need to be solved to improve the health of the patient (coloboma) and problems that need to be solved for a better cosmetic result (hypertelorism).
The treatment of the facial clefts can be divided in different areas of the face: the cranial anomalies, the orbital and eye anomalies, the nose anomalies, the midface anomalies and the mouth anomalies.
According to a Cochrane review of 2012, controversies remain regarding type of surgery, non-surgical intervention and age of intervention.
The aims of treatment are as follows:
The elimination of any amblyopia
A cosmetically acceptable ocular alignment
long term stability of eye position
binocular cooperation.
Hydrocephalus can be successfully treated by placing a drainage tube (shunt) between the brain ventricles and abdominal cavity. There is some risk of infection being introduced into the brain through these shunts, however, and the shunts must be replaced as the person grows. A subarachnoid hemorrhage may block the return of CSF to the circulation.
This should be distinguished from external hydrocephalus. This is a condition generally seen in infants and involving enlarged fluid spaces or subarachnoid spaces around the outside of the brain. This is generally a benign condition that resolves spontaneously by 2 years of age. (Greenberg, Handbook of Neurosurgery, 5th Edition, pg 174). Imaging studies and a good medical history can help to differentiate external hydrocephalus from subdural hemorrhages or symptomatic chronic extra-axial fluid collections which are accompanied by vomiting, headaches and seizures.
Hydrocephalus treatment is surgical, creating a way for the excess fluid to drain away. In the short term, an external ventricular drain (EVD), also known as an extraventricular drain or ventriculostomy, provides relief. In the long term, some patients will need any of various types of cerebral shunt. It involves the placement of a ventricular catheter (a tube made of silastic) into the cerebral ventricles to bypass the flow obstruction/malfunctioning arachnoidal granulations and drain the excess fluid into other body cavities, from where it can be resorbed. Most shunts drain the fluid into the peritoneal cavity (ventriculo-peritoneal shunt), but alternative sites include the right atrium (ventriculo-atrial shunt), pleural cavity (ventriculo-pleural shunt), and gallbladder. A shunt system can also be placed in the lumbar space of the spine and have the CSF redirected to the peritoneal cavity (Lumbar-peritoneal shunt). An alternative treatment for obstructive hydrocephalus in selected patients is the endoscopic third ventriculostomy (ETV), whereby a surgically created opening in the floor of the third ventricle allows the CSF to flow directly to the basal cisterns, thereby shortcutting any obstruction, as in aqueductal stenosis. This may or may not be appropriate based on individual anatomy. For infants, ETV is sometimes combined with choroid plexus cauterization, which reduces the amount of cerebrospinal fluid produced by the brain. The technique, known as ETV/CPC was pioneered in Uganda by neurosurgeon Ben Warf and is now in use in several U.S. hospitals.
Treatment for the disease itself is nonexistent, but there are options for most of the symptoms. For example, one suffering from hearing loss would be given hearing aids, and those with Hirschsprung’s disorder can be treated with a colostomy.
There does not yet exist a specific treatment for IP. Treatment can only address the individual symptoms.
Medication is used for strabismus in certain circumstances. In 1989, the US FDA approved Botulinum toxin therapy for strabismus in patients over 12 years old. Most commonly used in adults, the technique is also used for treating children, in particular children affected by infantile esotropia. The toxin is injected in the stronger muscle, causing temporary and partial paralysis. The treatment may need to be repeated three to four months later once the paralysis wears off. Common side effects are double vision, droopy eyelid, overcorrection, and no effect. The side effects typically resolve also within three to four months. Botulinum toxin therapy has been reported to be similarly successful as strabismus surgery for people with binocular vision and less successful than surgery for those who have no binocular vision.
There have been cases of improvement in extra-ocular movement with botulinum toxin injection.
While there is no cure for HPS, treatment for chronic hemorrhages associated with the disorder includes therapy with vitamin E and the antidiuretic dDAVP.
As there is no known cure, Loeys–Dietz syndrome is a lifelong condition. Due to the high risk of death from aortic aneurysm rupture, patients should be followed closely to monitor aneurysm formation, which can then be corrected with interventional radiology or vascular surgery.
Previous research in laboratory mice has suggested that the angiotensin II receptor antagonist losartan, which appears to block TGF-beta activity, can slow or halt the formation of aortic aneurysms in Marfan syndrome. A large clinical trial sponsored by the National Institutes of Health is currently underway to explore the use of losartan to prevent aneurysms in Marfan syndrome patients. Both Marfan syndrome and Loeys–Dietz syndrome are associated with increased TGF-beta signaling in the vessel wall. Therefore, losartan also holds promise for the treatment of Loeys–Dietz syndrome. In those patients in which losartan is not halting the growth of the aorta, irbesartan has been shown to work and is currently also being studied and prescribed for some patients with this condition.
If an increased heart rate is present, atenolol is sometimes prescribed to reduce the heart rate to prevent any extra pressure on the tissue of the aorta. Likewise, strenuous physical activity is discouraged in patients, especially weight lifting and contact sports.
A preoperative pulmonology consultation is needed. The anesthesia team should
be aware that patients may have postoperative pulmonary complications as part
of the syndrome.
Preoperative hematology consultation is advisable prior to elective ocular
surgeries. Since patients with the syndrome have bleeding tendencies,
intraoperative, perioperative, and postoperative hemorrhages should be
prevented and treated. If platelet aggregation improves with desmopressin, it
may be administered in the preoperative period. However, sometimes
plasmapheresis is needed in the perioperative period.
Ophthalmologists should try to avoid retrobulbar blocks in patients with the
syndrome. Whenever possible, patients with HPS may benefit from general
endotracheal anesthesia. Phacoemulsification may help prevent intraoperative
and postoperative bleeding in patients with the syndrome. Prolonged bleeding
has been reported following strabismus surgery in patients with the syndrome.
In cases of accommodative esotropia, the eyes turn inward due to the effort of focusing far-sighted eyes, and the treatment of this type of strabismus necessarily involves refractive correction, which is usually done via corrective glasses or contact lenses, and in these cases surgical alignment is considered only if such correction does not resolve the eye turn.
In case of strong anisometropia, contact lenses may be preferable to spectacles because they avoid the problem of visual disparities due to size differences (aniseikonia) which is otherwise caused by spectacles in which the refractive power is very different for the two eyes. In a few cases of strabismic children with anisometropic amblyopia, a balancing of the refractive error eyes via refractive surgery has been performed before strabismus surgery was undertaken.
Early treatment of strabismus when the person is a baby may reduce the chance of developing amblyopia and depth perception problems. However, a review of randomized controlled trials concluded that the use of corrective glasses to prevent strabismus is not supported by existing research. Most children eventually recover from amblyopia if they have had the benefit of patches and corrective glasses. Amblyopia has long been considered to remain permanent if not treated within a critical period, namely before the age of about seven years; however, recent discoveries give reason to challenge this view and to adapt the earlier notion of a critical period to account for stereopsis recovery in adults.
Eyes that remain misaligned can still develop visual problems. Although not a cure for strabismus, prism lenses can also be used to provide some temporary comfort and to prevent double vision from occurring.
Currently, the most common form of treatment for SLOS involves dietary cholesterol supplementation. Anecdotal reports indicate that this has some benefits; it may result in increased growth, lower irritability, improved sociability, less self-injurious behaviour, less tactile defensiveness, fewer infections, more muscle tone, less photosensitivity and fewer autistic behaviours. Cholesterol supplementation begins at a dose of 40–50 mg/kg/day, increasing as needed. It is administered either through consuming foods high in cholesterol (eggs, cream, liver), or as purified food grade cholesterol. Younger children and infants may require tube feeding. However, dietary cholesterol does not reduce the levels of 7DHC, cannot cross the blood–brain barrier, and does not appear to improve developmental outcomes. One empirical study found that cholesterol supplementation did not improve developmental delay, regardless of the age at which it began. This is likely because most developmental delays stem from malformations of the brain, which dietary cholesterol cannot ameliorate due to its inability to cross the blood–brain barrier.
A comprehensive eye examination including an ocular motility (i.e., eye movement) evaluation and an evaluation of the internal ocular structures will allow an eye doctor to accurately diagnose the exotropia. Although glasses and/or patching therapy, exercises, or prisms may reduce or help control the outward-turning eye in some children, surgery is often required.
There is a common form of exotropia known as "convergence insufficiency" that responds well to orthoptic vision therapy including exercises. This disorder is characterized by an inability of the eyes to work together when used for near viewing, such as reading. Instead of the eyes focusing together on the near object, one deviates outward.
"Consecutive exotropia" is an exotropia that arises after an initial esotropia. Most often it results from surgical overcorrection of the initial esotropia. It can be addressed with further surgery or with vision therapy; vision therapy has shown promising results if the consecutive exotropia is intermittent, alternating and of small magnitude. (Consecutive exotropia may however also spontaneously develop from esotropia, without surgery or botulinum toxin treatment.)
Because of the risks of surgery, and because about 35% of people require at least one more surgery, many people try vision therapy first. This consists of visual exercises. Although vision therapy is generally not covered by American health insurance companies, many large insurers such as Aetna have recently begun offering full or partial coverage in response to recent studies.
Strabismus surgery is sometimes recommended if the exotropia is present for more than half of each day or if the frequency is increasing over time. It is also indicated if a child has significant exotropia when reading or viewing near objects or if there is evidence that the eyes are losing their ability to work as a single unit (binocular vision). If none of these criteria are met, surgery may be postponed pending simple observation with or without some form of eyeglass and/or patching therapy. In very mild cases, there is a chance that the exotropia will diminish with time. The long-term success of surgical treatment for conditions such as intermittent exotropia is not well proven, and surgery can often result in a worsening of symptoms due to overcorrection. Evidence from the available literature suggests that unilateral surgery was more effective than bilateral surgery for individuals affected with intermittent exotropia.
The surgical procedure for the correction of exotropia involves making a small incision in the tissue covering the eye in order to reach the eye muscles. The appropriate muscles are then repositioned in order to allow the eye to move properly. The procedure is usually done under general anesthesia. Recovery time is rapid, and most people are able to resume normal activities within a few days. Following surgery, corrective eyeglasses may be needed and, in many cases, further surgery is required later to keep the eyes straight.
When a child requires surgery, the procedure is usually performed before the child attains school age. This is easier for the child and gives the eyes a better chance to work together. As with all surgery, there are some risks. However, strabismus surgery is usually a safe and effective treatment.