Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
With so few individuals actually surviving until birth, the only treatment option is surgery to try to remove the parasitic twin. Surgery, however, is very dangerous and has been successful only once. The problem with surgical intervention is that the arterial supplies of the head are so intertwined that it is very hard to control the bleeding, and it has been suggested that cutting off the parasitic twin's arterial supply might improve the odds of the developed twin's survival.
High quality evidence is lacking for cranial remolding orthosis (baby helmet) for the positional condition and use for this purpose is controversial. If conservative treatment is unsuccessful helmets may help to correct abnormal head shapes. These helmets are used to treat deformational plagiocephaly, brachycephaly, scaphocephaly and other head shape deformities in infants 3–18 months of age by gently allowing the head shape to grow back into a normal shape. This type of treatment has been used for severe deformations.
The condition may improve to some extent as the baby grows, but in some cases, treatment can improve the shape of a baby’s head.
Stem cell therapy is considered a very promising treatment for patients with colpocephaly. Oligodendroglial cells can be used which will increase the production of myelin and alleviate symptoms of colpocephaly. Damage to the developing oligodendrocytes near the cerebral ventricles causes cerebral palsy as well as other demyelinating diseases such as multiple sclerosis and leukodystrophies. Demyelination reduces the speed of conduction in affected nerves resulting in disabilities in cognition, sensation, and motor. Therefore, by using oligodendrocyte stem cells the effects of cerebral palsy can be treated and other symptoms of colpocephaly can be alleviated.
Surgery to separate conjoined twins may range from very easy to very difficult depending on the point of attachment and the internal parts that are shared. Most cases of separation are extremely risky and life-threatening. In many cases, the surgery results in the death of one or both of the twins, particularly if they are joined at the head or share a vital organ. This makes the ethics of surgical separation, where the twins can survive if not separated, contentious. Alice Dreger of Northwestern University found the quality of life of twins who remain conjoined to be higher than is commonly supposed. Lori and George Schappell and Abby and Brittany Hensel are notable examples.
In 1955, neurosurgeon Harold Voris (1902-1980) and his team at Mercy Hospital in Chicago performed the first successful operation to separate Siamese twins conjoined (Craniopagus twins) at the head, which resulted in long-term survival for both. The larger girl was reported in 1963 as developing normally, but the smaller was permanently impaired.
In 1957, Bertram Katz and his surgical team made international medical history performing the world's first successful separation of conjoined twins sharing a vital organ. Omphalopagus twins John Nelson and James Edward Freeman (Johnny and Jimmy) were born to Mr. and Mrs. William Freeman of Youngstown, Ohio, on April 27, 1956. The boys shared a liver but had separate hearts and were successfully separated at North Side Hospital in Youngstown, Ohio by Bertram Katz. The operation was funded by the Ohio Crippled Children's Service Society.
Recent successful separations of conjoined twins include that of the separation of Ganga & Jamuna Shreshta in 2001, who were born in Kathmandu, Nepal, in 2000. The 197-hour surgery on the pair of craniopagus twins was a landmark one which took place in Singapore; the team was led by neurosurgeons Chumpon Chan and Keith Goh. The surgery left Ganga with brain damage and Jamuna unable to walk. Seven years later, Ganga Shrestha died at the Model Hospital in Kathmandu in July 2009, at the age of 8, three days after being admitted for treatment of a severe chest infection.
A case of particular interest was that of infants Rose and Grace ("Mary" and "Jodie") Attard, conjoined twins from Malta who were separated in Great Britain by court order over the religious objections of their parents, Michaelangelo and Rina Attard. The surgery took place in November, 2000, at St Mary's Hospital in Manchester. The operation was controversial because Rose, the weaker twin, would die as a result of the procedure as her heart and lungs were dependent upon Grace's. (The twins were attached at the lower abdomen and spine.) However, if the operation had not taken place, it was certain that both twins would die. Grace survived to enjoy a normal childhood.
In 2003 two 29-year-old women from Iran, Ladan and Laleh Bijani, who were joined at the head but had separate brains (craniopagus) were surgically separated in Singapore, despite surgeons' warnings that the operation could be fatal to one or both. Their complex case was accepted only because high tech graphical imagery and modelling would allow the medical team to plan the risky surgery. Unfortunately, an undetected major vein hidden from the scans was discovered during the operation. The separation was completed but both women died while still in surgery on July 8, 2003.
Craniopagus twins are conjoined twins that are fused at the cranium. This condition occurs in about 10–20 babies in every million births in the United States. Among this small group, cephalic conjoining, or craniopagus twinning, represents the rarest of congenital abnormalities, accounting for 2–6% of all conjoined twins. Additionally, conjoined twins are genetically identical and always share the same sex. The union in craniopagus twins may occur on any portion of the Calvary, but does not include either the face or the foramen magnum. The thorax and abdomen are separate and each twin has its own umbilicus and umbilical cord. The union may involve the entire diameter of the head or only a small portion. This suggests that although there are many different kinds of vulnerabilities already known in the scientific community, there are an infinite number of variations that can occur. Most of these variations are based on the rotation of one twin's skull to the other and the different phenotype sub-groups of craniopagus twins are based on all these rotational conformations. Each of these factors (rotation, spot of union) affects the development of the brain, the vascular system within the brain and overall wellness of life both of the twins have outside the womb. Relatively few craniopagus twins survive the perinatal period – approximately 40% of conjoined twins are stillborn and an additional 33% die within the immediate perinatal period, usually from organ abnormalities and failure. However 25% of craniopagus twins survive and can be considered for a surgical separation and several attempts occur yearly worldwide. In the last-half century, many advances in medicine including brain imaging, neuro-anesthesia and neurosurgical techniques have proven that a successful outcome is possible following separation of total craniopagus twins.
Colpocephaly is usually non-fatal. There has been relatively little research conducted to improve treatments for colpocephaly, and there is no known definitive treatment of colpocephaly yet. Specific treatment depends on associated symptoms and the degree of dysfunction. Anticonvulsant medications can be given to prevent seizure complications, and physical therapy is used to prevent contractures (shrinkage or shortening of muscles) in patients that have limited mobility. Patients can also undergo surgeries for stiff joints to improve motor function. The prognosis for individuals with colpocephaly depends on the severity of the associated conditions and the degree of abnormal brain development.
A rare case of colpocephaly is described in literature which is associated with macrocephaly instead of microcephaly. Increased intracranial pressure was also found in the condition. Similar symptoms (absence of corpus callosum and increased head circumference) were noted as in the case of colpocephaly that is associated with microcephaly. A bi-ventricular peritoneal shunt was performed, which greatly improved the symptoms of the condition. Ventriculo-peritoneal shunts are used to drain the fluid into the peritoneal cavity.
If left untreated, the pump twin will die in 50–75% of cases.
After diagnosis, ultrasound and amniocentesis are used to rule out genetic abnormalities in the pump twin. A procedure may then be performed which will stop the abnormal blood flow. The acardiac twin may be selectively removed. The umbilical cord of the acardiac twin may be surgically cut, separating it from the pump twin, a procedure called fetoscopic cord occlusion. Or a radio-frequency ablation needle may be used to coagulate the blood in the acardiac twin's umbilical cord. This last procedure is the least invasive. These procedures greatly increase the survival chances of the pump twin, to about 80%.
The pump twin will be monitored for signs of heart failure with echocardiograms. If the pump twin's condition deteriorates, the obstetrician may recommend early delivery. Otherwise, the pregnancy continues normally. Vaginal birth is possible unless the fetus is in distress, although it is recommended that the delivery take place at a hospital with NICU capabilities.
Craniopagus parasiticus is an extremely rare type of parasitic twinning occurring in about 4 to 6 of 10,000,000 births. In craniopagus parasiticus, a parasitic twin head with an undeveloped body is attached to the head of a developed twin. Fewer than a dozen cases of this type of conjoined twin have been documented in the literature. Most infants with this condition are stillborn, or die shortly after birth.
The conservative treatment consists of observation in time. Studies show that the trigger thumb spontaneously resolves in 49 months. According to Leung et al., trigger thumbs in infants resolve spontaneously in 63% of the cases. No residual deformities were found and there is no recurrence once resolved. Residual deformity is defined as persistent flexion deformities of the thumb and radial deviation at the IPJ. Extension exercises and splinting can be added to the observation. These two elements have favourable results in improvement in flexion impairment of the thumb. However, compared to observation, the benefit of merely extension exercises and splinting are still unclear.
It has been recommended to attempt conservative treatment first, before attempting surgical treatment.
There are several types of treatment for congenital trigger thumb, conservative and surgical.
Retrospective data of over 182,000 births, with the statistical power to determine even mild associations, suggest that a single or multiple nuchal cords at the time of delivery is not associated with adverse perinatal outcomes, is associated with higher birthweights and fewer caesarean sections in births. Although some studies have found that a tight nuchal cord is associated with short term morbidity, it is unclear whether such outcomes are actually a result of the presence of the nuchal cord itself, or as a result of clamping and cutting the cord
Management of a presenting nuchal cord should be tailored to prevent umbilical cord compression whenever possible. Techniques to preserve an intact nuchal cord depend on how tightly the cord is wrapped around the infant’s neck. If the cord is loose, it can easily be slipped over the infant’s head. The infant can be delivered normally and placed on maternal abdomen as desired. If the cord is too tight to go over the infant’s head, the provider may be able to slip it over the infant’s shoulders and deliver the body through the cord. The cord can then be unwrapped from around the baby after birth. Finally, if the cord is too tight to slip back over the shoulders, one may use the somersault maneuver to allow the body to be delivered. The birth attendant may also choose to clamp and cut the umbilical cord to allow for vaginal delivery if other methods of nuchal cord management are not feasible.
Lip pits may be surgically removed either for aesthetic reasons or discomfort due to inflammation caused by bacterial infections or chronic saliva excretion, though spontaneous shrinkage of the lip pits has occurred in some rare cases. Chronic inflammation has also been reported to cause squamous-cell carcinoma. It is essential to completely remove the entire lip pit canal, as mucoid cysts can develop if mucous glands are not removed. A possible side effect of removing the lip pits is a loose lip muscle. Other conditions associated with VWS, including CL, CP, congenital heart defects, etc. are surgically corrected or otherwise treated as they would be if they were non-syndromic.
The girls underwent a six-week period for physical therapy and recovery. Maria and Teresa are now able to walk independently and are starting to form their own individual personalities. The girls were able to return to the Dominican Republic and often return to the United States for follow-up care.
This procedure involves removal of amniotic fluid periodically throughout the pregnancy under the assumption that the extra fluid in the recipient twin can cause preterm labor, perinatal mortality, or tissue damage. In the case that the fluid does not reaccumulate, the reduction of amniotic fluid stabilizes the pregnancy. Otherwise the treatment is repeated as necessary. There is no standard procedure for how much fluid is removed each time. There is a danger that if too much fluid is removed, the recipient twin could die. This procedure is associated with a 66% survival rate of at least one fetus, with a 15% risk of cerebral palsy and average delivery occurring at 29 weeks gestation.
This procedure involves the tearing of the dividing membrane between fetuses such that the amniotic fluid of both twins mixes under the assumption that pressure is different in either amniotic sac and that its equilibration will ameliorate progression of the disease. It has not been proven that pressures are different in either amniotic sac. Use of this procedure can preclude use of other procedures as well as make difficult the monitoring of disease progression. In addition, tearing the dividing membrane has contributed to cord entanglement and demise of fetuses through physical complications.
Medical management may involve immunosuppressive drugs such as methotrexate, corticosteroids, cyclophosphamide, and azathioprine. No randomized controlled trials have yet been conducted to evaluate such treatments, so the benefits have not been clearly established.
A parasitic twin (also known as an asymmetrical or unequal conjoined twin) is the result of the processes that also produce vanishing twins and conjoined twins, and may represent a continuum between the two. Parasitic twins occur when a twin embryo begins developing in utero, but the pair does not fully separate, and one embryo maintains dominant development at the expense of its twin. Unlike conjoined twins, one ceases development during gestation and is vestigial to a mostly fully formed, otherwise healthy individual twin. The undeveloped twin is defined as parasitic, rather than conjoined, because it is incompletely formed or wholly dependent on the body functions of the complete fetus.
The independent twin is called the autosite.
Affected individuals may benefit from autologous fat transfer or fat grafts to restore a more normal contour to the face. However, greater volume defects may require microsurgical reconstructive surgery which may involve the transfer of an island parascapular fasciocutaneous flap or a free flap from the groin, rectus abdominis muscle (Transverse Rectus Abdominis Myocutaneous or "TRAM" flap) or latissimus dorsi muscle to the face. Severe deformities may require additional procedures, such as pedicled temporal fascia flaps, cartilage grafts, bone grafts, orthognathic surgery, and bone distraction. The timing of surgical intervention is controversial; some surgeons prefer to wait until the disease has run its course while others recommend early intervention.
Embryo splitting in which zygote divide asexually,
to produce identical children, is blocked by mitosis inhibitor.
There are two categories of craniopagus twins:
- Partial Although partial craniopagus is less common than total, it is still a division of craniopagus twins that is worth exploring. This type of twinning is defined as having limited surface area involvement, with either intact crania or cranial defects. In other words, it is a defect of the cranial "coverings." In partial craniopagus twins, the unions are usually frontal and less commonly occipital and vertical. Angular frontal junctions occur when the two twins are joined at any part of the forehead. Occipital twins are joined at the occipital lobe in the back of the head and vertical are joined on the top of the head and usually face opposite directions. The junctional diameter is often smaller in partial forms and occasionally an incomplete layer of bone may be present between the twins. Each child maintains independent calvarial convexities except at the common area of skull junction. The dura of both children may be intact or deficient and cortical gyri may interdigitate. Additionally shared dural venous sinuses is usually absent or if it is present it is negligible. These twins usually undergo successful separation and both twins may live to lead normal lives.
- Total Total craniopagus twins are defined as sharing extensive surface area with widely connected cranial cavities. Among total craniopagus twins, there are four main categories which are then further divided into several subcategories. Frontal, the first category, are when twins are facing each other with the axis of the bodies forming an acute angle. Temporoparietal craniopagi are joined immediately above the external auditory meatus. The third division is the occipital anomaly where the twins are connected in the occipital lobe causing the twins to face away from each other. The final variant is the parietal craniopagus which occurs when twins fuse at the vertex with the axis of the twins forming an obtuse angle. This category is perhaps the most important, or most interesting because the craniums of the two twins share the most veins, lobes and circuitry and is often described as one brain shared by two individuals.
- "Type 1": both children face in the same general directional axis so that the angle between twins is less than 40 degrees. These twins show relatively symmetric superior bi-parietal or vertex compressional flattening.
- "Type 2": both children face opposite directions so that the deformity shows an axial rotation between 140-180 degrees.
- "Type 3": in this variety axial rotation is intermediate between the first two types with a rotation of being between 40 and 140.
The best treatment is prevention in patients with a known predisposition. This includes preventing unnecessary trauma or surgery (including ear piercing, elective mole removal), whenever possible. Any skin problems in predisposed individuals (e.g., acne, infections) should be treated as early as possible to minimize areas of inflammation.
Treatment of a keloid scar is age dependent. Radiotherapy, anti-metabolites and corticoids would not be recommended to be used in children, in order to avoid harmful side effects, like growth abnormalities.
In adults, corticosteriods combined with 5-FU and PDL in a triple therapy, enhance results and diminish side effects.
Further prophylactic and therapeutic strategies include pressure therapy, silicone gel sheeting, intra-lesional triamcinolone acetonide (TAC), cryosurgery, radiation, laser therapy, IFN, 5-FU and surgical excision as well as a multitude of extracts and topical agents.
Surgical excision is currently still the most common treatment for a significant amount of keloid lesions. However, when used as the solitary form of treatment there is a large recurrence rate of between 70 and 100%. It has also been known to cause a larger lesion formation on recurrence. While not always successful alone, surgical excision when combined with other therapies dramatically decreases the recurrence rate. Examples of these therapies include but are not limited to radiation therapy, pressure therapy and laser ablation. Pressure therapy following surgical excision has shown promising results, especially in keloids of the ear and earlobe. The mechanism of how exactly pressure therapy works is unknown at present but many patients with keloid scars and lesions have benefited from it.
Should keloids occur, the most effective treatment is superficial external beam radiotherapy (SRT), which can achieve cure rates of up to 90%.
Additionally, intralesional injection with a corticosteroid such as Kenalog does appear to aid in the reduction of inflammation and pruritus.
Cryotherapy or cryosurgery is an application of extreme cold to treat keloids. This treatment method is easy to perform and has shown results with least chance of recurrence.
Only a few individuals who did not have fatal kidney and bladder complications are known to have survived beyond birth with this condition.
A vanishing twin, also known as fetal resorption, is a fetus in a multi-gestation pregnancy which dies in utero and is then partially or completely reabsorbed. In some instances, the dead twin will be compressed into a flattened, parchment-like state known as "fetus papyraceus".
Vanishing twins occur in up to one out of every eight multifetus pregnancies and may not even be known in most cases. "High resorption rates, which cannot be explained on the basis of the expected abortion rate...suggest intense fetal competition for space, nutrition, or other factors during early gestation, with frequent loss or resorption of the other twin(s)."
In pregnancies achieved by IVF, "it frequently happens that more than one amniotic sac can be seen in early pregnancy, whereas a few weeks later there is only one to be seen and the other has 'vanished'."
With a team of 45 surgeons, the separation surgery took approximately 20-hours. The separation process started on November 7, 2011 at 6 am. This was the first time that a surgery of the type was performed at the Children’s Hospital of Richmond. The surgical team divided the pancreas, the liver, as well the organ systems that the twin girls shared. Lastly, the surgical team rebuilt the abdominal walls of the twins.