Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The evidence for surgical therapy is poor. Surgery is normally recommended only after medication has proved ineffective, or if side effects of medication are intolerable. While there may be pain relief after surgery, there is also a considerable risk of side effects, such as facial numbness after the procedure. Microvascular decompression appears to result in the longest pain relief. Percutaneous radiofrequency thermorhizotomy may also be effective as may stereotactic radiosurgery; however the effectiveness decreases with time.
Surgical procedures can be separated into non-destructive and destructive:
Treatment of people believed to have ATN or TN is usually begun with medication. The long-time first drug of choice for facial neuralgia has been carbamazepine, an anti-seizure agent. Due to the significant side-effects and hazards of this drug, others have recently come into common use as alternatives. These include oxcarbazepine, lamotrigine, and gabapentin. A positive patient response to one of these medications might be considered as supporting evidence for the diagnosis, which is otherwise made from medical history and pain presentation. There are no present medical tests to conclusively confirm TN or ATN.
If the anti-seizure drugs are found ineffective, one of the tricyclic antidepressant medications such as amitriptyline or nortriptyline, may be used. The tricyclic antidepressants are known to have dual action against both depression and neuropathic pain. Other drugs which may also be tried, either individually or in combination with an anti-seizure agent, include baclofen, pregabalin, anti-seizure drugs (to calm nerve endings), muscle relaxants, and opioid drugs such as oxycodone or an oxycodone/paracetamol combination.
For some people with ATN opioids may represent the only viable medical option which preserves quality of life and personal functioning. Although there is considerable controversy in public policy and practice in this branch of medicine, practice guidelines have long been available and published.
All destructive procedures will cause facial numbness, post relief, as well as pain relief.
- Percutaneous techniques which all involve a needle or catheter entering the face up to the origin where the nerve splits into three divisions and then damaging this area, purposely, to produce numbness but also stop pain signals. These techniques are proven effective especially in those where other interventions have failed or in those who are medically unfit for surgery such as the elderly.
- Balloon compression - inflation of a balloon at this point causing damage and stopping pain signals.
- Glycerol injection- deposition of a corrosive liquid called glycerol at this point causes damage to the nerve to hinder pain signals.
- Radiofrequency thermocoagulation rhizotomy - application of a heated needle to damage the nerve at this point.
- Stereotactic radiosurgery is a form of radiation therapy that focuses high-power energy on a small area of the body
As diagnostic criteria have been indecisive and its pathophysiology remains unclear, no permanent cure is available. Antiepileptic medications (membrane-stabilizing drugs) such as pregabalin, gabapentin, topiramate, and lamotrigine improve symptoms, but there is no effective permanent or long-term treatment for SUNCT.
However, a few short-term treatments are available and can relieve and possibly prevent some symptoms of attacks.
Lamotrigine exhibits some long-term prevention and reduction in many patients; however, titration of dose is difficult due to adverse skin reactions.
Topiramate also has preventive effects but it is accompanied by a high risk of severe side-effects for patients with a history of kidney stones, glaucoma, depression, or low body weight.
Intravenous lidocaine can abolish symptoms during its administration, or reduce frequency and duration of attacks. However, administration of intravenous lidocaine requires careful monitoring of ECG and blood pressure.
Methylprednisolone therapy shows some promise in short-term prevention of attacks, even though its mechanism of action is yet to be discovered.
The calcium channel blocker verapamil is reported to be useful in alleviating symptoms (lower frequency and duration of attacks), even though some patients experience worsened symptoms.
Various medications that are often used in other headache syndromes such as nonsteroidal anti-inflammatory drugs, acetaminophen, tricyclic antidepressants, calcium channel antagonists do not relieve the symptoms of SUNCT.
There have been attempts to alter oxygen supply during attacks to alleviate the symptoms since some of the headaches are caused by decreased oxygen supply; however, elevated blood oxygen level did not affect the symptoms.
Researchers now focus on the administration of various combination of medications and therapies to treat symptoms of SUNCT.
The objective of irradiation is to halt the growth of the acoustic neuroma tumour, it does not excise it from the body, as the term 'radiosurgery' or 'gammaknife' implies. Radiosurgery is only suitable for small to medum size tumors.
Systemic (intravenous or oral) chemotherapy and intrathecal chemotherapy: Intrathecal therapy is when injection is done directly to the spinal cord into the sub-arachnoid space to avoid the Blood-Brain-Barrier (BBB) and gain direct access to the CSF. Intrathecal Therapy is preferred since intravenous chemotherapy do not penetrate the BBB. The most common chemicals used are liposomal cytarabine (DepoCyte) and intrathecal methotrexate (MTX).
In combination, intrathecal chemotherapy most often comprises methotrexate, cytarabine, thiotepa and steroids. Ventriculoperitoneal shunts may also be applied with chemotherapy to avoid invasive surgery to gain access to the CSF.
An example of treatment:
Intrathecal MTX injection at a dose of 15 mg/day for 5 days every other week with hydrocortisone acetate injecting IT on day one to prevent arachnoiditis, the inflammation of the arachnoid. MTX administration is continued until neurological progression or relapse occurred. Systemic chemotherapy, radiotherapy, and surgery are performed depending on the need of the patient.
Risks of treatments:
Both Chemotherapy and Radiotherapy are harmful to the body and most definitely the brain. Caution must be utilized in treating patients with NM. Another factor that makes treatment difficult is that there is no suitable method to evaluate the disease progression.
There are three modalities of surgical treatment (excision) depending on where the anatomical location of the incision to access the tumor is made: retrosigmoid (a variant of what was formerly called suboccipital), translabyrinthine, and middle fossa.
The goals of surgery are to control the tumor, and preserve hearing as well as facial nerves. Especially in the case of larger tumors, there may be a tradeoff between tumor removal and preservation of nerve functionality.
There are different defined degrees of surgical excision, termed 'subtotal resection', 'radical subtotal resection', 'near-total resection', and 'total resection' in order or increasing proportion of tumor removed. Lesser amount of tumor removal may increase likelihood of preservation of nerve function (hence better post-operative hearing), but also likelihood of tumor regrowth, necessitating additional treatment.
If drug treatment is found to be ineffective or causes disabling side effects, one of several neurosurgical procedures may be considered. The available procedures are believed to be less effective with type II (atypical) trigeminal neuralgia than with type I (typical or "classic") TN. Among present procedures, the most effective and long lasting has been found to be microvascular decompression (MVD), which seeks to relieve direct compression of the trigeminal nerve by separating and padding blood vessels in the vicinity of the emergence of this nerve from the brain stem, below the cranium.
Choice of a surgical procedure is made by the doctor and patient in consultation, based on the patient's pain presentation and health and the doctor's medical experience. Some neurosurgeons resist the application of MVD or other surgeries to atypical trigeminal neuralgia, in light of a widespread perception that ATN pain is less responsive to these procedures. However, recent papers suggest that in cases where pain initially presents as type I TN, surgery may be effective even after the pain has evolved into type II.
There is no standard treatment that has been established for NM thus treatments are almost always palliative.
Radiotherapy:
This method is used mostly for focal type of NM due to the nature of damage and success rate associated with the treatment. Radiotherapy targets and tumor and destroys the collective tissues of cancerous cells.
There is no specific treatment for NDPH. Often they are treated similar to migraines.
A number of medications have been used including amitriptyline, gabapentin, pregabalin, propranolol, and topiramate. There are no prospective placebo controlled trials of preventive treatment. In those with migrainous features treatment may be similar to migraines.
Opiates, or narcotics, tend to be avoided because of their side effects, including the development of medication overuse headaches and potential for dependency. NDPH is often associated with medication overuse. To avoid the development of medication overuse headaches, it is advised not to use pain relievers for more than nine days a month.
NDPH, like other primary headaches, has been linked to comorbid psychiatric conditions, mainly mood and anxiety and panic disorders. The spectrum of anxiety disorders, particularly panic disorder, should be considered in NDPH patients presenting with psychiatric symptoms. Simultaneous treatment of both disorders may lead to good outcomes.
Medications within the tetracycline family, mexiletine, corticosteroids and nerve blocks are being studied. Occipital nerve block have been reported to be helpful for some people. 23/71 people had undergone a nerve block for their severe headache. The NDPH-ICHD group responded to the nerve block much more often (88.9%) than the NDPH with migraine features (42.9% responded to nerve block).
Botulinum toxin is highly effective in the treatment of hemifacial spasm. It has a success rate equal to that of surgery, but repeated injections may be required every 3 to 6 months. The injections are administered as an outpatient or office procedure. Whilst side effects occur, these are never permanent. Repeated injections over the years remain highly effective. Whilst the toxin is expensive, the cost of even prolonged courses of injections compares favourably with the cost of surgery. Patients with HFS should be offered a number of treatment options. Very mild cases or those who are reluctant to have surgery or Botulinum toxin injections can be offered medical treatment, sometimes as a temporary measure. In young and fit patients microsurgical decompression and Botulinum injections should be discussed as alternative procedures. In the majority of cases, and especially in the elderly and the unfit, Botulinum toxin injection is the treatment of first choice. Imaging procedures should be done in all unusual cases of hemifacial spasm and when surgery is contemplated. Patients with hemifacial spasm were shown to have decreased sweating after botulinum toxin injections. This was first observed in 1993 by Khalaf Bushara and David Park. This was the first demonstration of nonmuscular use of BTX-A. Bushara further showed the efficacy of botulinum toxin in treating hyperhidrosis (excessive sweating). BTX-A was later approved for the treatment of excessive underarm sweating. This is technically known as severe primary axillary hyperhidrosis – excessive underarm sweating with an unknown cause which cannot be managed by topical agents (see focal hyperhidrosis).
Mild cases of hemifacial spasm may be managed with sedation or carbamazepine (an anticonvulsant drug). Microsurgical decompression and botulinum toxin injections are the current main treatments used for hemifacial spasm.
There are several different surgical techniques for the removal of acoustic neuroma. The choice of approach is determined by size of the tumour, hearing capability, and general clinical condition of the patient.
- The retrosigmoid approach offers some opportunity for the retention of hearing.
- The translabyrinthine approach will sacrifice hearing on that side, but will usually spare the facial nerve. Post-operative cerebrospinal fluid leaks are more common.
- The middle fossa approach is preferred for small tumours, and offers the highest probability of retention of hearing and vestibular function.
- Less invasive endoscopic techniques have been done outside of the United States for some time. Recovery times are reported to be faster. However, this technique is not yet mainstream among surgeons in the US.
Larger tumors can be treated by either the translabyrinthine approach or the retrosigmoid approach, depending upon the experience of the surgical team. With large tumors, the chance of hearing preservation is small with any approach. When hearing is already poor, the translabyrinthine approach may be used for even small tumors. Small, lateralized tumours in patients with good hearing should have the middle fossa approach. When the location of the tumour is more medial a retrosigmoid approach may be better.
Auditory canal decompression is another surgical technique that can prolong usable hearing when a vestibular schwannoma has grown too large to remove without damage to the cochlear nerve. In the IAC (internal auditory canal) decompression, a middle fossa approach is employed to expose the bony roof of the IAC without any attempt to remove the tumor. The bone overlying the acoustic nerve is removed, allowing the tumour to expand upward into the middle cranial fossa. In this way, pressure on the cochlear nerve is relieved, reducing the risk of further hearing loss from direct compression or obstruction of vascular supply to the nerve.
Radiosurgery is a conservative alternative to cranial base or other intracranial surgery. With conformal radiosurgical techniques, therapeutic radiation focused on the tumour, sparing exposure to surrounding normal tissues. Although radiosurgery can seldom completely destroy a tumor, it can often arrest its growth or reduce its size. While radiation is less immediately damaging than conventional surgery, it incurs a higher risk of subsequent malignant change in the irradiated tissues, and this risk in higher in NF2 than in sporadic (non-NF2) lesions.
Treatment can include pharmaceutical or surgical means. The drug carbamazepine (Tegretol) has been used successfully. Other drugs used with variable success include gabapentin and, recently, memantine. Successful surgery options include superior oblique tenectomy accompanied by inferior oblique myectomy. However, "Overall, the bulk of the ophthalmic literature would agree with the viewpoint that invasive craniotomy surgical procedures should be justified only by the presence of intractable and absolutely unbearable symptoms."
Samii et al. and Scharwey and Samii described a patient who had superior oblique myokymia for 17 years. The interposition of a Teflon pad between the trochlear nerve and a compressing artery and vein at the nerve's exit from the midbrain led to a remission lasting for a follow-up of 22 months.
There are three treatment options available to a patient. These options are observation, microsurgical removal and radiation (radiosurgery or radiotherapy). Determining which treatment to choose involves consideration of many factors including the size of the tumor, its location, the patient's age, physical health and current symptoms. About 25% of all acoustic neuromas are treated with medical management consisting of a periodic monitoring of the patient's neurological status, serial imaging studies, and the use of hearing aids when appropriate.
One of the last great obstacles in the management of acoustic neuromas is hearing preservation and/or rehabilitation after hearing loss. Hearing loss is both a symptom and concommitant risk, regardless of the treatment option chosen.
Treatment does not restore hearing already lost, though there are a few rare cases of hearing recovery reported.
A diagnosis of NF2 related bilateral acoustic neuromas creates the possibility of complete deafness if the tumors are left to grow unchecked. Preventing or treating the complete deafness that may befall individuals with NF2 requires complex decision making. The trend at most academic U.S. medical centers is to recommend treatment for the smallest tumor which has the best chance of preserving hearing. If this goal is successful, then treatment can also be offered for the remaining tumor. If hearing is not preserved at the initial treatment, then usually the second tumor, in the only-hearing ear, is just observed. If it shows continued growth and becomes life-threatening, or if the hearing is lost over time as the tumor grows, then treatment is undertaken. This strategy has the highest chance of preserving hearing for the longest time possible.
Another treatment option for an acoustic neuroma is radiation. Stereotactic radiation can be delivered as single fraction stereotactic radiosurgery (SRS) or as multi-session fractionated stereotactic radiotherapy (FSR). Both techniques are performed in the outpatient setting, not requiring general anesthesia or a hospital stay. The purpose of these techniques is to arrest the growth of the tumor. This treatment has not been well studied and thus it is unclear if it is better than observation or surgery.
All types of radiation therapy for acoustic neuromas may result in "tumor control" in which the tumor cells die and necrosis occurs. Tumor control means that the tumor growth may slow or stop and, in some cases, the tumor may shrink in size. Acoustic neuroma tumors have been completely eliminated by radiation treatments in almost no cases. In other words, radiation cannot remove the tumor like microsurgery would. Tumors under 2.5 - 3.0 cm, without significant involvement of the brainstem, are more favorable for radiation treatment. Side effects can occur when the brainstem is irradiated and in some cases of large tumors, radiation is suggested against.
In single dose treatments, hundreds of small beams of radiation are aimed at the tumor. This results in a concentrated dose of radiation to the tumor and avoids exposure of surrounding brain tissues to the radiation. Many patients have been successfully treated this way. Facial weakness or numbness, in the hands of experienced radiation physicians, occurs in only a small percent of cases. Hearing can be preserved in some cases.
The multi-dose treatment, FSR, delivers smaller doses of radiation over a period of time, requiring the patient to return to the treatment location on a daily basis, from 3 to 30 times, generally over several weeks. Each visit lasts a few minutes and most patients are free to go about their daily business before and after each treatment session. Early data indicates that FSR may result in better hearing preservation when compared to single-session SRS.
Radiated patients require lifetime follow-up with MRI scans. Follow-up after SRS and FSR typically involves an MRI scan and audiogram at six months, one year, then yearly for several years, then every second or third year indefinitely to make sure the tumor does not start to grow again. Patients should understand there have been rare reports of malignant degeneration (a benign tumor becoming malignant) after radiotherapy. In some cases the tumor does not die and continues to grow. In those instances, another treatment is necessary - either microsurgery or sometimes another dose of radiation.
Studies are beginning to appear for the other modalities. All of the techniques use computers to create three dimensional models of the tumor and surrounding neural structures. Radiation physicists then create dosimetry maps showing the level of radiation to be received by the tumor and the normal tissues. Surgeons, radiation therapists and physicists then modify the dosimetry to maximize tumor doses and minimize radiation toxicity to surrounding normal tissues. Treatments generally last 30–60 minutes. Just like for surgery, the experience of the team in treating acoustic neuromas with all modalities (surgery and radiation) can affect outcomes.
There are a multitude of studies supporting short-term (<5 yrs.) and longer-term (over 10 yrs.) tumor control with radiation. Unfortunately, as is the case with microsurgical studies, most have inconsistent follow-up to draw definitive conclusions.
A 2009 clinical trial at Massachusetts General Hospital used the cancer drug Bevacizumab (commercial name: Avastin) to treat 10 patients with neurofibromatosis type II. The result was published in "The New England Journal of Medicine". Of the ten patients treated with bevacizumab, tumours shrank in 9 of them, with the median best response rate of 26%. Hearing improved in some of the patients, but improvements were not strongly correlated with tumour shrinkage. Bevacizumab works by cutting the blood supply to the tumours and thus depriving them of their growth vector. Side effects during the study included alanine aminotransferase, proteinuria, and hypertension (elevated blood pressure) among others. A separate trial, published in "The Neuro-oncology Journal", show 40% tumour reduction in the two patients with NF2, along with significant hearing improvement.
Overall the researchers believed that bevacizumab showed clinically significant effects on NF-2 patients. However, more research is needed before the full effects of bevacizumab can be established in NF-2 patients.
A combination of lifestyle modifications and medications can be used for the treatment of dolichoectasias.
- Antihypertensive medications such as Thiazides, Beta Blocker, ACE Inhibitor
- Trental or other Pentoxifylline drugs
- Dietary changes
- Weight loss
- Regular exercise
Neurosarcoidosis, once confirmed, is generally treated with glucocorticoids such as prednisolone. If this is effective, the dose may gradually be reduced (although many patients need to remain on steroids long-term, frequently leading to side-effects such as diabetes or osteoporosis). Methotrexate, hydroxychloroquine, cyclophosphamide, pentoxifylline, thalidomide and infliximab have been reported to be effective in small studies. In patients unresponsive to medical treatment, radiotherapy may be required. If the granulomatous tissue causes obstruction or mass effect, neurosurgical intervention is sometimes necessary. Seizures can be prevented with anticonvulsants, and psychiatric phenomena may be treated with medication usually employed in these situations.
Chemotherapy is the preferred secondary treatment after resection. The treatment kills astroblastoma cells left behind after surgery and induces a non-dividing, benign state for remaining tumor cells. Normally, chemotherapy is not recommended until the second required resection, implying that the astroblastoma is a high-grade tumor continuing to recur every few months. A standard chemotherapy protocol starts with two rounds of nimustine hydrochoride (ACNU), etoposide, vincristine, and interferon-beta. The patient undergoes a strict drug regimen until another surgery is required. By the third surgery, should recurrence in the astroblastoma occur, a six-round program of ifosfamide, cisplatin, and etoposide will "shock" the patient's system to the point where recurrence halts. Unfortunately, chemotherapy may not always be successful with patients requiring further resection of the tumor, since the tumor cell begins to show superior vasculature and a strong likelihood of compromising a patient's well-being. Oral ingestion of temozolomide for at-home bedside use may be preferred by the patient.
There is no known cure to BVVL however a Dutch group have reported the first promising attempt at treatment of the disorder with high doses of riboflavin. This Riboflavin protocol seems to be beneficial in almost all cases. Specialist medical advice is of course essential to ensure the protocol is understood and followed correctly.
Patients will almost certainly require additional symptomatic treatment and supportive care. This must be specifically customized to the needs of the individual but could include mobility aids, hearing aids or cochlear implants, vision aids, gastrostomy feeding and assisted ventilation, while steroids may or may not help patients.
The first report of BVVL syndrome in Japanese literature was of a woman that had BVVL and showed improvement after such treatments. The patient was a sixty-year-old woman who had symptoms such as sensorineural deafness, weakness, and atrophy since she was 15 years old. Around the age of 49 the patient was officially diagnosed with BVVL, incubated, and then attached to a respirator to improve her CO2 narcosis. After the treatments, the patient still required respiratory assistance during sleep; however, the patient no longer needed assistance by a respirator during the daytime.
As of 2010, there was no cure for MMND. People with MMND are given supportive care to help them cope, which can include physical therapy, occupational therapy, counselling, and hearing aids.
Radiation therapy selectively kills astroblastoma cells while leaving surrounding normal brain tissue unharmed. The use of radiation therapy after an astroblastoma excision has variable results. Conventional external beam radiation has both positive and negative effects on patients, but it is not recommended at this point to treat all types. All in all, the radiosensitivity of astroblastoma to therapy remains unclear, since some research advocate its effectiveness while others diminish the effects. Future studies must be done on patients with both total excision and sub-excision of the tumor to accurately assess whether radiation benefits patients under different circumstances.
Medical treatment of hemiplegia can be separate into several different categories:
- prophylactic treatment by avoiding triggers and long-term drug treatment
- acute management of the episodes
- management of the epilepsy
- sleep as a management technique.
Sleep is also used as a management technique. An early indication of an episode is tiredness so medication such as melatonin or Buccal midazolam can be administered to induce sleep and avoid the episode.
Those suffering from alternating hemiplegia are often underweight and with the help of dietitians, a meal plan should be developed for times of attack when consumption of food may be difficult.