Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
People with juvenile polyps may require yearly upper and lower endoscopies with polyp excision and cytology. Their siblings may also need to be screened regularly. Malignant transformation of polyps requires surgical colectomy.
Some benign tumors need no treatment; others may be removed if they cause problems such as seizures, discomfort or cosmetic concerns. Surgery is usually the most effective approach and is used to treat most benign tumors. In some case other treatments may be of use. Adenomas of the rectum may be treated with sclerotherapy, a treatment in which chemicals are used to shrink blood vessels in order to cut off the blood supply. Most benign tumors do not respond to chemotherapy or radiation therapy, although there are exceptions; benign intercranial tumors are sometimes treated with radiation therapy and chemotherapy under certain circumstances. Radiation can also be used to treat hemangiomas in the rectum. Benign skin tumors are usually surgically resected but other treatments such as cryotherapy, curettage, electrodesiccation, laser therapy, dermabrasion, chemical peels and topical medication are used.
Patients are usually managed by a multidisciplinary team including surgeons, gynecologists, and dermatologists because of the complex nature of this disorder. Follow-up for the increased risk of breast cancer risk includes monthly breast self-examination, annual breast examination, and mammography at age 30 or five years earlier than the youngest age of breast cancer in the family. The magnitude of the risk of breast cancer justifies routine screening with breast MRI as per published guidelines.
There is no way to reverse VHL mutations, but early recognition and treatment of specific manifestations of VHL can substantially decrease complications and improve quality of life. For this reason, individuals with VHL disease are usually screened routinely for retinal angiomas, CNS hemangioblastomas, clear-cell renal carcinomas and pheochromocytomas. CNS hemangioblastomas are usually surgically removed if they are symptomatic. Photocoagulation and cryotherapy are usually used for the treatment of symptomatic retinal angiomas, although anti-angiogenic treatments may also be an option. Renal tumours may be removed by a partial nephrectomy or other techniques such as radiofrequency ablation.
In terms of treatment/management one should observe what signs or symptoms are present and therefore treat those as there is no other current guideline. The affected individual should be monitored for cancer of:
- Thyroid
- Breast
- Renal
The different manifestations of Birt–Hogg–Dubé syndrome are controlled in different ways. The fibrofolliculomas can be removed surgically, through curettage, shave excision, skin resurfacing, or laser ablation; however, this is not a permanent solution as the tumors often recur. The renal and pulmonary symptoms are managed preventatively: CT scans, ultrasounds, or MRIs of the kidneys are recommended regularly, and family members are advised not to smoke. MRIs are the preferred method for surveillance of the kidneys in people with BHD because they do not carry the same risk of radiation complications as CT scans and are more sensitive than ultrasounds. Smokers with Birt–Hogg–Dubé have more severe pulmonary symptoms than non-smokers. Though nephrectomy is sometimes indicated, kidney tumors in cases of Birt–Hogg–Dubé are often removed without taking the whole kidney, in a procedure called partial nephrectomy. Knockout mouse studies have shown that administration of rapamycin may mitigate the effects of FLCN mutations on kidneys and improve renal cancer prognoses because of folliculin's interaction with the mTOR pathway.
Treatment is not needed in the asymptomatic patient. Symptomatic patients may benefit from surgical debulking of the tumor. Complete tumor removal is not usually needed and can be difficult due to the tumor location.
Most juvenile polyps are benign, however, malignancy can occur. The cumulative lifetime risk of colorectal cancer is 39% in patients with juvenile polyposis syndrome.
Cowden syndrome (also known as Cowden's disease and sometimes as multiple hamartoma syndrome) is a rare autosomal dominant inherited disorder characterized by multiple non-cancerous tumor-like growths called hamartomas, which typically are found in the skin, mucous membranes (mouth, nasal membranes, GI tract), thyroid gland, and breast tissue. While the hamartomas are benign, people with Cowden syndrome are at increased risk of certain forms of cancer, including breast, thyroid, uterus (endometrial), and kidney cancers.
Cowden syndrome is associated with mutations in PTEN, a tumor suppressor gene, that cause the PTEN protein not to work properly leading to hyperactivity of the mTOR pathway. These mutations lead to characteristic features including macrocephaly, intestinal hamartomatous polyps, benign skin tumors (multiple trichilemmomas, papillomatous papules, and acral keratoses) and dysplastic gangliocytoma of the cerebellum (Lhermitte-Duclos disease). In addition, there is a predisposition to breast carcinoma, follicular carcinoma of the thyroid, and endometrial carcinoma.
In terms of diagnosing Bannayan–Riley–Ruvalcaba syndrome there is no current method outside the physical characteristics that may be present as signs/symptoms. There are, however, multiple molecular genetics tests (and cytogenetic test) to determine Bannayan–Riley–Ruvalcaba syndrome.
Hereditary breast–ovarian cancer syndromes (HBOC) are cancer syndromes that produce higher than normal levels of breast cancer and ovarian cancer in genetically related families (either one individual had both, or several individuals in the pedigree had one or the other disease). The hereditary factors may be proven or suspected to cause the pattern of breast and ovarian cancer occurrences in the family.
A cancer syndrome or family cancer syndrome is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancers and may also cause the early onset of these cancers. Cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors. Many of these syndromes are caused by mutations in tumor suppressor genes, genes that are involved in protecting the cell from turning cancerous. Other genes that may be affected are DNA repair genes, oncogenes and genes involved in the production of blood vessels (angiogenesis). Common examples of inherited cancer syndromes are hereditary breast-ovarian cancer syndrome and hereditary non-polyposis colon cancer (Lynch syndrome).
Von Hippel–Lindau disease (VHL), also known as Familial cerebello retinal angiomatosis, is a rare genetic disorder with multisystem involvement. It is characterized by visceral cysts and benign tumors with potential for subsequent malignant transformation. It is a type of phakomatosis that results from a mutation in the von Hippel–Lindau tumor suppressor gene on chromosome 3p25.3.
Benign tumors are very diverse, and may be asymptomatic or may cause specific symptoms depending on their anatomic location and tissue type. They grow outwards, producing large rounded masses, which can cause what is known as a "mass effect". This growth can cause compression of local tissues or organs, which can cause many effects such as blockage of ducts, reduced blood flow (ischaemia), tissue death (necrosis) and nerve pain or damage. Some tumors also produce hormones that can lead to life-threatening situations. Insulinomas can produce large amounts of insulin leading to hypoglycemia. Pituitary adenomas can cause elevated levels of hormones such as growth hormone and insulin-like growth factor-1, which cause acromegaly; prolactin; ACTH and cortisol, which cause Cushings disease; TSH, which causes hyperthyroidism; and FSH and LH. Bowel intussusception can occur with various benign colonic tumors. Cosmetic effects can be caused by tumors, especially those of the skin, possibly causing psychological effects on the person with the tumor. Vascular tumors can bleed, which in some cases can be substantial, leading to anemia.
Currently, there is no cure for Urbach–Wiethe disease although there are some ways to individually treat many of its symptoms. There has been some success with oral dimethyl sulfoxide (DMSO) and intralesional heparin, but this is not true in all cases. D-penicillamine has also shown promise, but has yet to have been used extensively. There are also some reports of patients being treated with etretinate, a drug typically prescribed to treat psoriasis. In some cases, calcifications in the brain can lead to abnormal electrical activity among neurons. Some patients are given anti-seizure medication to help deal with these abnormalities. Tracheostomy is often used to relieve upper respiratory tract infections. Carbon dioxide laser surgery of thickened vocal cords and beaded eyelid papules have improved these symptoms for patients. The discovery of the mutations of the ECM1 gene has opened the possibility of gene therapy or a recombinant EMC1 protein for Urbach–Wiethe disease treatment, but neither of these two options are currently available.
Hereditary cancer syndromes underlie 5 to 10% of all cancers. Scientific understanding of cancer susceptibility syndromes is actively expanding: additional syndromes are being found, the underlying biology is becoming clearer, and commercialization of diagnostic genetics methodology is improving clinical access. Given the prevalence of breast and colon cancer, the most widely recognized syndromes include hereditary breast-ovarian cancer syndrome (HBOC) and hereditary non-polyposis colon cancer (HNPCC, Lynch syndrome).
Some rare cancers are strongly associated with hereditary cancer predisposition syndromes. Genetic testing should be considered with adrenocortical carcinoma; carcinoid tumors; diffuse gastric cancer; fallopian tube/primary peritoneal cancer; leiomyosarcoma; medullary thyroid cancer; paraganglioma/pheochromocytoma; renal cell carcinoma of chromophobe, hybrid oncocytic, or oncocytoma histology; sebaceous carcinoma; and sex cord tumors with annular tubules. Primary care physicians can identify people who are at risk of heridatary cancer syndrome.
Lipomatosis is believed to be an autosomal dominant condition in which multiple lipomas are present on the body. Many discrete, encapsulated lipomas form on the trunk and extremities, with relatively few on the head and shoulders. In 1993, a genetic polymorphism within lipomas was localized to chromosome 12q15, where the HMGIC gene encodes the high-mobility-group protein isoform I-C. This is one of the most commonly found mutations in solitary lipomatous tumors but lipomas often have multiple mutations. Reciprocal translocations involving chromosomes 12q13 and 12q14 have also been observed within.
Although this condition is benign, it can sometimes be very painful depending on location of the lipomas. Some patients who are concerned with cosmetics seek removal of individual lipomas. Removal can include simple excision, endoscopic removal, or liposuction.
Other entities which are accompanied by multiple lipomas include Proteus syndrome, Cowden syndrome and related disorders due to PTEN gene mutations, benign symmetric lipomatosis (Madelung disease),Dercum's Disease, familial lipodystrophy, hibernomas, epidural steroid injections with epidural lipomatosis, and familial angiolipomatosis.
Hamartomas, while generally benign, can cause problems due to their location. For example, when located on the skin, especially on the face or neck, they can be very disfiguring. Cases have been reported of hamartomas the size of a small orange. They may obstruct practically any organ in the body, such as the colon, eye, etc. They are particularly likely to cause major health issues when located in the hypothalamus, kidneys, lips, or spleen. They can be removed surgically if necessary, and are not likely to recur. Prognosis will depend upon the location and size of the lesion, as well as the overall health of the patient.
Surgery remains the mainstay of treatment for papillary thyroid cancer. The Revised 2009 American Thyroid Association guidelines for papillary thyroid cancer state that the initial procedure should be near-total or total thyroidectomy. Thyroid lobectomy alone may be sufficient treatment for small (<1 cm), low-risk, unifocal, intrathyroidal papillary carcinomas in the absence of prior head and neck irradiation or radiologically or clinically involved cervical nodal metastasis.
- Minimal disease (diameter up to 1.0 centimeters) - hemithyroidectomy (or unilateral lobectomy) and isthmectomy may be sufficient. There is some discussion whether this is still preferable over total thyroidectomy for this group of patients.
- Gross disease (diameter over 1.0 centimeters) - total thyroidectomy, and central compartment lymph node removal is the therapy of choice. Additional lateral neck nodes can be removed at the same time if an ultrasound guided FNA and thyroglobulin TG cancer washing was positive on the pre-operative neck node ultrasound evaluation.
Arguments for total thyroidectomy are:
- Reduced risk of recurrence, if central compartment nodes are removed at the original surgery.
- 30-85% of papillary carcinoma is multifocal disease. Hemithyroidectomy may leave disease in the other lobe. However, multifocal disease in the remnant lobe may not necessarily become clinically significant or serve as a detriment to patient survival.
- Ease of monitoring with thyroglobulin (sensitivity for picking up recurrence is increased in presence of total thyroidectomy, and ablation of the remnant normal thyroid by low dose radioiodine 131 after following a low iodine diet (LID).
- Ease of detection of metastatic disease by thyroid and neck node ultrasound.
- Post-operative complications at high-volume thyroid surgery centers with experienced surgeons are comparable to that of hemithyroidectomy.
Arguments for hemithyroidectomy:
- Most patients have low-risk cancer with an excellent prognosis, with similar survival outcomes in low-risk patients who undergo total thyroidectomy versus hemithyroidectomy.
- Less likelihood of patient requiring lifelong thyroid hormone replacement after surgery.
Thyroid total body scans are less reliable at finding recurrence than TG and ultrasound.
Papillary tumors tend to be more aggressive in patients over age 45. In such cases, it might be required to perform a more extensive resection including portions of the trachea. Also, the sternocleidomastoid muscle, jugular vein, and accessory nerve are to be removed if such procedure allows apparently complete tumor resection. If a significant amount of residual tumor is left in the neck, external radiotherapy has been indicated and has proven useful especially in those cases when the residual tumor does not take up radioiodine.
After surgical thyroid removal, the patient waits around 4–6 weeks to then have radioiodine therapy. This therapy is intended to both detect and destroy any metastasis and residual tissue in the thyroid. The treatment may be repeated 6–12 months after initial treatment of metastatic disease where disease recurs or has not fully responded.
Patients are administered hormone replacement levothyroxine for life after surgery, especially after total thyroidectomy. Chemotherapy with cisplatin or doxorubicin has proven limited efficacy, however, it could be helpful for patients with bone metastases to improve their quality of life. Patients are also prescribed levothyroxine and radioiodine after surgery. Levothyroxine influences growth and maturation of tissues and it is involved in normal growth, metabolism, and development. In case of metastases, patients are prescribed antineoplastic agents which inhibit cell growth and proliferation and help in palliating symptoms in progressive disease.
After successful treatment, 35 percent of the patients may experience a recurrence within a 40-year span. Also, patients may experience a high incidence of nodule metastasis, with 35 percent cases of cervical node metastases. Approximately 20 percent of patients will develop multiple tumors within the thyroid gland.
There is ongoing discussion regarding the best management regarding the optimal surgical procedure for papillary thyroid cancer. Prognosis of patients with papillary thyroid cancer is found to be dependent on the patient's age, the size of the tumor, presence of metastatic disease, and the presence of tumor invasion into adjacent tissues near the thyroid gland. Recent studies have examined a more conservative approach to surgery and have demonstrated that hemithyroidectomy may be acceptable for patients with low-risk papillary thyroid cancer with tumor size 1 cm to 4 cm with no presence of invasion to tissues surrounding the thyroid or metastasis. Studies examining large databases of patients with papillary thyroid cancer have concluded that there is no survival advantage for patients with stage I papillary thyroid cancer size 1–4 cm receiving total thyroidectomy versus hemithyroidectomy. In light of this data, choosing the optimal course of surgical and medical management of papillary thyroid cancer should involve shared decision making from patient, endocrinologists, and surgeons.
Some studies have shown that thyroglobulin (Tg) testing combined with neck ultrasound is more productive in finding disease recurrence than full- or whole-body scans (WBS) using radioactive iodine. However, current protocol (in the USA) suggests a small number of clean annual WBS are required before relying on Tg testing plus neck ultrasound. When needed, whole body scans consist of withdrawal from thyroxine medication and/or injection of recombinant human Thyroid stimulating hormone (TSH). In both cases, a low iodine diet regimen must also be followed to optimize the takeup of the radioactive iodine dose. Low dose radioiodine of a few millicuries is administered. Full body nuclear medicine scan follows using a gamma camera. Scan doses of radioactive iodine may be I or I.
Recombinant human TSH, commercial name Thyrogen, is produced in cell culture from genetically engineered hamster cells.
A hamartoma is a mostly benign, focal malformation that resembles a neoplasm in the tissue of its origin. While traditionally considered developmental malformation, many hamartomas have clonal chromosomal aberrations that are acquired through somatic mutations and on this basis are now considered to be neoplastic. It grows at the same rate as the surrounding tissue. It is composed of tissue elements normally found at that site, but they are growing in a disorganized manner. Hamartomas occur in many different parts of the body, and are most often asymptomatic incidentalomas (undetected until they are found incidentally on an imaging study obtained for another reason).
Additionally, the definition of hamartoma versus benign neoplasm is often unclear, since both lesions can be clonal. Lesions such as adenomas, developmental cysts, hemangiomas, lymphangiomas, and rhabdomyomas within the kidneys, lungs, or pancreas are interpreted by some experts as hamartomas while others consider them true neoplasms. Moreover, even though hamartomas show a benign histology, there is a risk of some rare but life-threatening clinical issues such as those found in neurofibromatosis type I and tuberous sclerosis.
It is different from choristoma, a closely related form of heterotopia. The two can be differentiated as follows: a hamartoma is an excess of normal tissue in a normal situation (e.g., a birthmark on the skin), while a choristoma is an excess of tissue in an abnormal situation (e.g., pancreatic tissue in the duodenum).
Birt-Hogg-Dubé Syndrome patients, families, and caregivers are encouraged to join the NIH Rare Lung Diseases Consortium Contact Registry. This is a privacy protected site that provides up-to-date information for individuals interested in the latest scientific news, trials, and treatments related to rare lung diseases.
Multiple hamartoma syndrome is a syndrome characterized by more than one hamartoma.
It is sometimes equated with Cowden syndrome. However, MeSH also includes Bannayan–Zonana syndrome (that is, Bannayan–Riley–Ruvalcaba syndrome) and Lhermitte–Duclos disease under this description. Some articles include Cowden syndrome, Bannayan–Riley–Ruvalcaba syndrome, and at least some forms of Proteus syndrome and Proteus-like syndrome under the umbrella term PTEN hamartoma tumor syndromes (PHTS).
Based on overall cancer staging into stages I to IV, papillary thyroid cancer has a 5-year survival rate of 100 percent for stages I and II, 93 percent for stage III and 51 percent for stage IV.
Urbach–Wiethe disease is typically not a life-threatening condition. The life expectancy of these patients is normal as long as the potential side effects of thickening mucosa, such as respiratory obstruction, are properly addressed. Although this may require a tracheostomy or carbon dioxide laser surgery, such steps can help ensure that individuals with Urbach–Wiethe disease are able to live a full life. Oral dimethyl sulfoxide (DMSO) has been shown to reduce skin lesions, helping to minimize discomfort for these individuals.