Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
While there is no cure for asthma, symptoms can typically be improved. A specific, customized plan for proactively monitoring and managing symptoms should be created. This plan should include the reduction of exposure to allergens, testing to assess the severity of symptoms, and the usage of medications. The treatment plan should be written down and advise adjustments to treatment according to changes in symptoms.
The most effective treatment for asthma is identifying triggers, such as cigarette smoke, pets, or aspirin, and eliminating exposure to them. If trigger avoidance is insufficient, the use of medication is recommended. Pharmaceutical drugs are selected based on, among other things, the severity of illness and the frequency of symptoms. Specific medications for asthma are broadly classified into fast-acting and long-acting categories.
Bronchodilators are recommended for short-term relief of symptoms. In those with occasional attacks, no other medication is needed. If mild persistent disease is present (more than two attacks a week), low-dose inhaled corticosteroids or alternatively, an leukotriene antagonist or a mast cell stabilizer by mouth is recommended. For those who have daily attacks, a higher dose of inhaled corticosteroids is used. In a moderate or severe exacerbation, corticosteroids by mouth are added to these treatments.
Medications used to treat asthma are divided into two general classes: quick-relief medications used to treat acute symptoms; and long-term control medications used to prevent further exacerbation. Antibiotics are generally not needed for sudden worsening of symptoms.
Prevention is by not smoking and avoiding other lung irritants. Frequent hand washing may also be protective. Treatment of acute bronchitis typically involves rest, paracetamol (acetaminophen), and NSAIDs to help with the fever. Cough medicine has little support for its use and is not recommended in children less than six years of age. There is tentative evidence that salbutamol may be useful in those with wheezing; however, it may result in nervousness and tremors. Antibiotics should generally not be used. An exception is when acute bronchitis is due to pertussis. Tentative evidence supports honey and pelargonium to help with symptoms. Getting plenty of rest and fluids is also often recommended.
Corticosteroids are usually used in inhaled form, but may also be used as tablets to treat and prevent acute exacerbations. While inhaled corticosteroids (ICSs) have not shown benefit for people with mild COPD, they decrease acute exacerbations in those with either moderate or severe disease. By themselves, they have no effect on overall one-year mortality. Whether they affect the progression of the disease is unknown. When used in combination with a LABA, they may decrease mortality compared to either ICSs or LABA alone. Inhaled steroids are associated with increased rates of pneumonia. Long-term treatment with steroid tablets is associated with significant side effects.
Inhaled bronchodilators are the primary medications used, and result in a small overall benefit. The two major types are β agonists and anticholinergics; both exist in long-acting and short-acting forms. They reduce shortness of breath, wheeze, and exercise limitation, resulting in an improved quality of life. It is unclear if they change the progression of the underlying disease.
In those with mild disease, short-acting agents are recommended on an as needed basis. In those with more severe disease, long-acting agents are recommended. Long-acting agents partly work by improving hyperinflation. If long-acting bronchodilators are insufficient, then inhaled corticosteroids are typically added. With respect to long-acting agents, if tiotropium (a long-acting anticholinergic) or long-acting beta agonists (LABAs) are better is unclear, and trying each and continuing the one that worked best may be advisable. Both types of agent appear to reduce the risk of acute exacerbations by 15–25%. While both may be used at the same time, any benefit is of questionable significance.
Several short-acting β agonists are available, including salbutamol (albuterol) and terbutaline. They provide some relief of symptoms for four to six hours. Long-acting β agonists such as salmeterol, formoterol, and indacaterol are often used as maintenance therapy. Some feel the evidence of benefits is limited while others view the evidence of benefit as established. Long-term use appears safe in COPD with adverse effects include shakiness and heart palpitations. When used with inhaled steroids they increase the risk of pneumonia. While steroids and LABAs may work better together, it is unclear if this slight benefit outweighs the increased risks. Indacaterol requires an inhaled dose once a day, and is as effective as the other long-acting β agonist drugs that require twice-daily dosing for people with stable COPD.
Two main anticholinergics are used in COPD, ipratropium and tiotropium. Ipratropium is a short-acting agent, while tiotropium is long-acting. Tiotropium is associated with a decrease in exacerbations and improved quality of life, and tiotropium provides those benefits better than ipratropium. It does not appear to affect mortality or the overall hospitalization rate. Anticholinergics can cause dry mouth and urinary tract symptoms. They are also associated with increased risk of heart disease and stroke. Aclidinium, another long acting agent, reduces hospitalizations associated with COPD and improves quality of life. Aclinidinium has been used as an alternative to tiotropium, but which drug is more effective is not known.
Interventions include intravenous (IV) medications (e.g. magnesium sulfate), aerosolized medications to dilate the airways (bronchodilation) (e.g., albuterol or ipratropium bromide/salbutamol), and positive-pressure therapy, including mechanical ventilation. Multiple therapies may be used simultaneously to rapidly reverse the effects of status asthmaticus and reduce permanent damage of the airways. Intravenous corticosteroids and methylxanthines are often given. If the person with a severe asthma exacerbation is on a mechanical ventilator, certain sedating medications such as ketamine or propofol, have bronchodilating properties. According to a new randomized control trial ketamine and aminophylline are also effective in children with acute asthma who responds poorly to standard therapy.
Although feline asthma is incurable, ongoing treatments allow many domestic cats to live normal lives. Feline asthma is commonly managed through use of bronchodilators for mild cases, or glucocorticosteroids with bronchodilators for moderate to severe cases.
Previously, standard veterinary practice recommended injected and oral medications for control of the disease. These drugs may have systemic side effects including diabetes and pancreatitis. In 2000, Dr. Philip Padrid pioneered inhaled medications using a pediatric chamber and mask using Flovent(r) (fluticasone) and salbutamol. Inhaled treatments reduce or eliminate systemic effects. In 2003 a chamber called the AeroKat Feline Aerosol Chamber was designed specifically for cats, significantly improving efficiency and reducing cost for the caregiver. Medicine can also be administered using a human baby spacer device. Inhaled steroid usually takes 10-14 days to reach an effective dose.
Short-acting beta-agonists like salbutamol or terbutaline or long-acting beta-agonists like salmeterol and formoterol dilate airways which relieve the symptoms thus reducing the severity of the reaction. Some patients also use it just before work to avoid a drop in the FEV.
Anti-inflammatory agents like corticosteroids, LKTRA or mast cell stabilizers can also be used depending on the severity of the case.
Evidence suggests that the decline in lung function observed in chronic bronchitis may be slowed with smoking cessation. Chronic bronchitis is treated symptomatically and may be treated in a nonpharmacologic manner or with pharmacologic therapeutic agents. Typical nonpharmacologic approaches to the management of COPD including bronchitis may include: pulmonary rehabilitation, lung volume reduction surgery, and lung transplantation. Inflammation and edema of the respiratory epithelium may be reduced with inhaled corticosteroids. Wheezing and shortness of breath can be treated by reducing bronchospasm (reversible narrowing of smaller bronchi due to constriction of the smooth muscle) with bronchodilators such as inhaled long acting β-adrenergic receptor agonists (e.g., salmeterol) and inhaled anticholinergics such as ipratropium bromide or tiotropium bromide. Mucolytics may have a small therapeutic effect on acute exacerbations of chronic bronchitis. Supplemental oxygen is used to treat hypoxemia (too little oxygen in the blood) and has been shown to reduce mortality in chronic bronchitis patients. Oxygen supplementation can result in decreased respiratory drive, leading to increased blood levels of carbon dioxide (hypercapnia) and subsequent respiratory acidosis.
The preferred treatment for many patients is desensitization to aspirin, undertaken at a clinic or hospital specializing in such treatment. In the United States, the Scripps Clinic in San Diego, CA, the Massachusetts General Hospital in Boston, MA, the Brigham and Women's Hospital in Boston, MA, National Jewish Hospital in Denver and Stanford University Adult ENT Clinic have allergists who routinely perform aspirin desensitization procedures for patients with aspirin-induced asthma. Patients who are desensitized then take a maintenance dose of aspirin daily and while on daily aspirin they often have reduced need for supporting medications, fewer asthma and sinusitis symptoms than previously, and many have an improved sense of smell. Desensitization to aspirin reduces the chance of nasal polyp recurrence, and can slow the regrowth of nasal polyps. Even patients desensitized to aspirin may continue to need other medications including nasal steroids, inhaled steroids, and leukotriene antagonists.
Leukotriene antagonists and inhibitors (montelukast, zafirlukast, and zileuton) are often helpful in treating the symptoms of aspirin-induced asthma. Some patients require oral steroids to alleviate asthma and congestion, and most patients will have recurring or chronic sinusitis due to the nasal inflammation.
Treatment of bronchiectasis includes controlling infections and bronchial secretions, relieving airway obstructions, removal of affected portions of lung by surgical removal or artery embolization and preventing complications. The prolonged use of antibiotics prevents detrimental infections and decreases hospitalizations in people with bronchiectasis, but also increases the risk of people becoming infected with drug-resistant bacteria.
Other treatment options include eliminating accumulated fluid with postural drainage and chest physiotherapy. Postural drainage techniques, aided by physiotherapists and respiratory therapists, are an important mainstay of treatment. Airway clearance techniques appear useful.
Surgery may also be used to treat localized bronchiectasis, removing obstructions that could cause progression of the disease.
Inhaled steroid therapy that is consistently adhered to can reduce sputum production and decrease airway constriction over a period of time, and help prevent progression of bronchiectasis. This is not recommended for routine use in children. One commonly used therapy is beclometasone dipropionate.
Although not approved for use in any country, mannitol dry inhalation powder, has been granted orphan drug status by the FDA for use in people with bronchiectasis and with cystic fibrosis.
Evidence does not support the general use of antibiotics in acute bronchitis. While some evidence suggests antibiotics speed up resolution of the cough by about 12 hours there is a greater risk of gastrointestinal problems and no change in longer term outcomes. Antibiotics use also leads to the promotion of antibiotic-resistant bacteria, which increase morbidity and mortality.
The best treatment is to avoid the provoking allergen, as chronic exposure can cause permanent damage. Corticosteroids such as prednisolone may help to control symptoms but may produce side-effects.
Recovery is directly dependent on the duration and level of exposure to the causative agent. Depending on the severity of the case, the condition of the patient can improve dramatically during the first year after removal from exposure.
Three basic types of procedures are used for treating the affected workers: reducing a worker's exposure, removing a worker from the environment with the asthma-causing agent, and treatment with asthma medications. Completely stopping exposure is more effective treatment than reducing exposure. By reducing exposure, the probability of suffering another reaction is lowered. Methods of reducing exposure include transferring an affected worker to a position without the relevant asthmagen, use of respiratory protection, and engineering controls. In 1984 innovator David Cornell discovered and invented effective control equipment in the UK for the removal of many harmful workplace fumes. 'BOFA' extraction products are now found in over 100 countries worldwide.
People affected by occupational asthma that occurred after a latency period, whether a few months or years, should be immediately removed from exposure to the causative agent. However, this can entail severe socio-economic consequences for the worker as well as the employer due to loss of job, unemployment, compensation issues, quasi-permanent medical expenditures, and hiring and re-training of new personnel. This can be mitigated by transferring the worker within a company.
Most cases are self-limited and resolve themselves in a few weeks.
Often surgery is required to remove nasal polyps, although they typically recur, particularly if aspirin desensitization is not undertaken. 90% of patients have been shown to have recurrence of nasal polyps within 5 years after surgery, with 47% requiring revision surgery in the same time period.
Underlying disease must be controlled to prevent exacerbation and worsening of ABPA, and in most patients this consists of managing their asthma or CF. Any other co-morbidities, such as sinusitis or rhinitis, should also be addressed.
Hypersensitivity mechanisms, as described above, contribute to progression of the disease over time and, when left untreated, result in extensive fibrosis of lung tissue. In order to reduce this, corticosteroid therapy is the mainstay of treatment (for example with prednisone); however, studies involving corticosteroids in ABPA are limited by small cohorts and are often not double-blinded. Despite this, there is evidence that acute-onset ABPA is improved by corticosteroid treatment as it reduces episodes of consolidation. There are challenges involved in long-term therapy with corticosteroids—which can induce severe immune dysfunction when used chronically, as well as metabolic disorders—and approaches have been developed to manage ABPA alongside potential adverse effects from corticosteroids.
The most commonly described technique, known as sparing, involves using an antifungal agent to clear spores from airways adjacent to corticosteroid therapy. The antifungal aspect aims to reduce fungal causes of bronchial inflammation, whilst also minimising the dose of corticosteroid required to reduce the immune system’s input to disease progression. The strongest evidence (double-blinded, randomized, placebo-controlled trials) is for itraconazole twice daily for four months, which resulted in significant clinical improvement compared to placebo, and was mirrored in CF patients. Using itraconazole appears to outweigh the risk from long-term and high-dose prednisone. Newer triazole drugs—such as posaconazole or voriconazole—have not yet been studied in-depth through clinical trials in this context.
Whilst the benefits of using corticosteroids in the short term are notable, and improve quality of life scores, there are cases of ABPA converting to invasive aspergillosis whilst undergoing corticosteroid treatment. Furthermore, in concurrent use with itraconazole, there is potential for drug interaction and the induction of Cushing syndrome in rare instances. Metabolic disorders, such as diabetes mellitus and osteoporosis, can also be induced.
In order to mitigate these risks, corticosteroid doses are decreased biweekly assuming no further progression of disease after each reduction. When no exacerbations from the disease are seen within three months after discontinuing corticosteroids, the patient is considered to be in complete remission. The exception to this rule is patients who are diagnosed with advanced ABPA; in this case removing corticosteroids almost always results in exacerbation and these patients are continued on low-dose corticosteroids (preferably on an alternate-day schedule).
Serum IgE can be used to guide treatment, and levels are checked every 6–8 week after steroid treatment commences, followed by every 8 weeks for one year. This allows for determination of baseline IgE levels, though it’s important to note that most patients do not entirely reduce IgE levels to baseline. Chest X-ray or CT scans are performed after 1–2 months of treatment to ensure infiltrates are resolving.
When eosinophilic pneumonia is related to an illness such as cancer or parasitic infection, treatment of the underlying cause is effective in resolving the lung disease. When due to AEP or CEP, however, treatment with corticosteroids results in a rapid, dramatic resolution of symptoms over the course of one or two days. Either intravenous methylprednisolone or oral prednisone are most commonly used. In AEP, treatment is usually continued for a month after symptoms disappear and the x-ray returns to normal (usually four weeks total). In CEP, treatment is usually continued for three months after symptoms disappear and the x-ray returns to normal (usually four months total). Inhaled steroids such as fluticasone have been used effectively when discontinuation of oral prednisone has resulted in relapse.
Because EP affects the lungs, individuals with EP have difficulty breathing. If enough of the lung is involved, it may not be possible for a person to breathe without support. Non-invasive machines such as a bilevel positive airway pressure machine may be used. Otherwise, placement of a breathing tube into the mouth may be necessary and a ventilator may be used to help the person breathe.
In order to prevent bronchiectasis, children should be immunized against measles, pertussis, pneumonia, and other acute respiratory infections of childhood. While smoking has not been found to be a direct cause of bronchiectasis, it is certainly an irritant that all patients should avoid in order to prevent the development of infections (such as bronchitis) and further complications.
Treatments to slow down the progression of this chronic disease include keeping bronchial airways clear and secretions weakened through various forms of pneumotherapy. Aggressively treating bronchial infections with antibiotics to prevent the destructive cycle of infection, damage to bronchial tubes, and more infection is also standard treatment. Regular vaccination against pneumonia, influenza and pertussis are generally advised. A healthy body mass index and regular doctor visits may have beneficial effects on the prevention of progressing bronchiectasis. The presence of hypoxemia, hypercapnia, dyspnea level and radiographic extent can greatly affect the mortality rate from this disease.
General treatment principles are removal from exposure, protection of the airway (i.e., preemptive intubation), and treatment of hypoxemia. Concomitant airway injury with acute bronchospasm often warrants treatment with bronchodilators because of the airway obstruction.
A beneficial role for corticosteroids has not been established by controlled trials in humans. Despite the lack of controlled evidence of efficacy, anecdotal reports of benefits from systemic corticosteroid use continue to appear.
Prophylactic antibiotic drugs have not proved to be efficacious in toxic lung injury. Antibiotics should be reserved for those patients with clinical evidence of infection.
The best treatment is avoidance of conditions predisposing to attacks, when possible. In athletes who wish to continue their sport or do so in adverse conditions, preventive measures include altered training techniques and medications.
Some take advantage of the refractory period by precipitating an attack by "warming up," and then timing competition such that it occurs during the refractory period. Step-wise training works in a similar fashion. Warm up occurs in stages of increasing intensity, using the refractory period generated by each stage to reach a full workload.
In addition to any issues of treatment compliance, and maximised corticosteroids (inhaled or oral) and beta agonist, brittle asthma treatment also involves for type 1 additional subcutaneous injections of beta2 agonist and inhalation of long acting beta-adrenoceptor agonist, whilst type 2 needs allergen avoidance and self-management approaches. Since catastrophic attacks are unpredictable in type 2, patients may display identification of the issue, such as a MedicAlert bracelet, and carry an epinephrine autoinjector.
The treatment of EIB has been extensively studied in asthmatic subjects over the last 30 years, but not so in EIB. Thus, it is not known whether athletes with EIB or ‘sports asthma’ respond similarly to subjects with classical allergic or nonallergic asthma. However, there is no evidence supporting different treatment for EIB in asthmatic athletes and nonathletes.
The most common medication used is a beta agonist taken about 20 minutes before exercise. Some physicians prescribe inhaled anti-inflammatory mists such as corticosteroids or leukotriene antagonists, and mast cell stabilizers have also proven effective. A randomized crossover study compared oral montelukast with inhaled salmeterol, both given two hours before exercise. Both drugs had similar benefit but montelukast lasted 24 hours.
Three randomized double-blind cross-over trials have examined the effect of vitamin C on EIB. Pooling the results of the three vitamin C trials indicates an average 48% reduction in the FEV1 decline caused by exericise (Figure). The systematic review concluded that "given the safety and low cost of vitamin C, and the positive findings for vitamin C administration in the three EIB studies, it seems reasonable for physically active people to test vitamin C when they have respiratory symptoms such as cough associated with exercise." It should be acknowledged that the total number of subjects involved in all three trials was only 40.
Figure: This forest plot shows the effect of vitamin C (0.5–2 g/day) on post-exercise decline in FEV1 in three studies with asthmatic participants. Constructed from data in Fig. 4 of Hemilä (2013).
The three horizontal lines indicate the three studies, and the diamond shape at the bottom indicates the pooled effect of vitamin C: decrease in the post-exercise decline in FEV1 by 48% (95%CI: 33 to 64%).
In May 2013, the American Thoracic Society issued the first treatment guidelines for EIB.
Feline asthma and other respiratory diseases may be prevented by cat owners by eliminating as many allergens as possible. Allergens that can be found in a cat’s habitual environment include: pollen, molds, dust from cat litter, perfumes, room fresheners, carpet deodorizers, hairspray, aerosol cleaners, cigarette smoke, and some foods. Avoid using cat litters that create lots of dust, scented cat litters or litter additives. Of course eliminating all of these can be very difficult and unnecessary, especially since a cat is only affected by one or two. It can be very challenging to find the allergen that is creating asthmatic symptoms in a particular cat and requires a lot of work on both the owner’s and the veterinarian's part. But just like any disease, the severity of an asthma attack can be propelled by more than just the allergens, common factors include: obesity, stress, parasites and pre-existing heart conditions. Dry air encourages asthma attacks so keep a good humidifier going especially during winter months.
Patients with single aspergillomas generally do well with surgery to remove the aspergilloma, and are best given pre-and post-operative antifungal drugs. Often, no treatment is necessary. However, if a patient coughs up blood (haemoptysis), treatment may be required (usually angiography and embolisation, surgery or taking tranexamic acid). Angiography (injection of dye into the blood vessels) may be used to find the site of bleeding which may be stopped by shooting tiny pellets into the bleeding vessel.
For chronic cavitary pulmonary aspergillosis and chronic fibrosing pulmonary aspergillosis, lifelong use of antifungal drugs is usual. Itraconazole and voriconazole are first and second-line anti fungal agents respectively. Posaconazole can be used as third-line agent, for patients who are intolerant of or developed resistance to the first and second-line agents. Regular chest X-rays, serological and mycological parameters as well as quality of life questionnaires are used to monitor treatment progress. It is important to monitor the blood levels of antifungals to ensure optimal dosing as individuals vary in their absorption levels of these drugs.