Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of treatment for tricuspid insufficiency prosthetic valve substitutes can be used, though artificial prostheses may cause thrombo‐embolic phenomena(bioprostheses may have a degeneration problem). Some evidence suggests that there are no significant differences between a mechanical or biological tricuspid valve in a recipient.
Generally, surgical treatment of tricuspid regurgitation is not indicated when it has arisen as a result of right ventricular dilatation. In such instances of secondary tricuspid regurgitation, the mainstay of therapy is medical. When left-sided heart failure is the cause, the individual is instructed to decrease intake of salt. Medications in this case may include diuretics and angiotensin-converting enzyme inhibitors.
The treatment for cor pulmonale can include the following: antibiotics, expectorants, oxygen therapy, diuretics, digitalis, vasodilators, and anticoagulants. Some studies have indicated that Shenmai injection with conventional treatment is safe and effective for cor pulmonale (chronic).
Treatment requires diuretics (to decrease strain on the heart). Oxygen is often required to resolve the shortness of breath. Additionally, oxygen to the lungs also helps relax the blood vessels and eases right heart failure. When wheezing is present, the majority of individuals require a bronchodilator. A variety of drugs have been developed to relax the blood vessels in the lung, calcium channel blockers are used but only work in few cases and according to NICE are not recommended for use at all.
Anticoagulants are used when venous thromboembolism is present. Venesection is used in severe secondary polycythaemia (because of hypoxia), which improves symptoms though survival rate has not been proven to increase.Finally, transplantation of single/double lung in extreme cases of cor pulmonale is also an option.
The prognosis of tricuspid insufficiency is less favorable for males than females. Furthermore, increased tricuspid insufficiency (regurgitation) severity is an indication of a poorer prognosis according to Nath, et al. It is also important to note that since tricuspid insufficiency most often arises from left heart failure or pulmonary hypertension, the person's prognosis is usually dictated by the prognosis of the latter conditions and not by the tricuspid insufficiency "per se".
Cor triatriatum (or triatrial heart) is a congenital heart defect where the left atrium (cor triatriatum sinistrum) or right atrium (cor triatriatum dextrum) is subdivided by a thin membrane, resulting in three atrial chambers (hence the name).
Cor triatriatum represents 0.1% of all congenital cardiac malformations and may be associated with other cardiac defects in as many as 50% of cases. The membrane may be complete or may contain one or more fenestrations of varying size.
Cor triatrium sinistrum is more common. In this defect there is typically a proximal chamber that receives the pulmonic veins and a distal (true) chamber located more anteriorly where it empties into the mitral valve. The membrane that separates the atrium into two parts varies significantly in size and shape. It may appear similar to a diaphragm or be funnel-shaped, bandlike, entirely intact (imperforate) or contain one or more openings (fenestrations) ranging from small, restrictive-type to large and widely open.
In the pediatric population, this anomaly may be associated with major congenital cardiac lesions such as tetralogy of Fallot, double outlet right ventricle, coarctation of the aorta, partial anomalous pulmonary venous connection, persistent left superior vena cava with unroofed coronary sinus, ventricular septal defect, atrioventricular septal (endocardial cushion) defect, and common atrioventricular canal. Rarely, asplenia or polysplenia has been reported in these patients.
In the adult, cor triatriatum is frequently an isolated finding.
Cor triatriatum dextrum is extremely rare and results from the complete persistence of the right sinus valve of the embryonic heart. The membrane divides the right atrium into a proximal (upper) and a distal (lower) chamber. The upper chamber receives the venous blood from both vena cavae and the lower chamber is in contact with the tricuspid valve and the right atrial appendage.
The natural history of this defect depends on the size of the communicating orifice between the upper and lower atrial chambers. If the communicating orifice is small, the patient is critically ill and may succumb at a young age (usually during infancy) to congestive heart failure and pulmonary edema. If the connection is larger, patients may present in childhood or young adulthood with a clinical picture similar to that of mitral stenosis. Cor triatriatum may also be an incidental finding when it is nonobstructive.
The disorder can be treated surgically by removing the membrane dividing the atrium.
First-line therapy for people with heart failure due to reduced systolic function should include angiotensin-converting enzyme (ACE) inhibitors (ACE-I) or angiotensin receptor blockers (ARBs) if the person develops a long term cough as a side effect of the ACE-I. Use of medicines from this class is associated with improved survival and quality of life in people with heart failure.
Beta-adrenergic blocking agents (beta blockers) also form part of the first line of treatment, adding to the improvement in symptoms and mortality provided by ACE-I/ARB. The mortality benefits of beta blockers in people with systolic dysfunction who also have atrial fibrillation (AF) is more limited than in those who do not have AF. If the ejection fraction is not diminished (HFpEF), the benefits of beta blockers are more modest; a decrease in mortality has been observed but reduction in hospital admission for uncontrolled symptoms has not been observed.
In people who are intolerant of ACE-I and ARBs or who have significant kidney dysfunction, the use of combined hydralazine and a long-acting nitrate, such as isosorbide dinitrate, is an effective alternate strategy. This regimen has been shown to reduce mortality in people with moderate heart failure. It is especially beneficial in African-Americans (AA). In AAs who are symptomatic, hydralazine and isosorbide dinitrate (H+I) can be added to ACE-I or ARBs.
In people with markedly reduced ejection fraction, the use of an aldosterone antagonist, in addition to beta blockers and ACE-I, can improve symptoms and reduce mortality.
Second-line medications for CHF do not confer a mortality benefit. Digoxin is one such medication. Its narrow therapeutic window, a high degree of toxicity, and the failure of multiple trials to show a mortality benefit have reduced its role in clinical practice. It is now used in only a small number of people with refractory symptoms, who are in atrial fibrillation and/or who have chronic low blood pressure.
Diuretics have been a mainstay of treatment for treatment of fluid accumulation, and include diuretics classes such as loop diuretics, thiazide-like diuretic, and potassium-sparing diuretic. Although widely used, evidence on their efficacy and safety is limited, with the exception of mineralocorticoid antagonists such as spironolactone. Mineralocorticoid antagonists in those under 75 years old appear to decrease the risk of death. A recent Cochrane review found that in small studies, the use of diuretics appeared to have improved mortality in individuals with heart failure. However, the extent to which these results can be extrapolated to a general population is unclear due to the small number of participants in the cited studies.
Anemia is an independent factor in mortality in people with chronic heart failure. The treatment of anemia significantly improves quality of life for those with heart failure, often with a reduction in severity of the NYHA classification, and also improves mortality rates. The latest European guidelines (2012) recommend screening for iron-deficient anemia and treating with parenteral iron if anemia is found.
The decision to anticoagulate people with HF, typically with left ventricular ejection fractions <35% is debated, but generally, people with coexisting atrial fibrillation, a prior embolic event, or conditions which increase the risk of an embolic event such as amyloidosis, left ventricular noncompaction, familial dilated cardiomyopathy, or a thromboembolic event in a first-degree relative.
Prostacyclin (prostaglandin I) is commonly considered the most effective treatment for PAH. Epoprostenol (synthetic prostacyclin) is given via continuous infusion that requires a semi-permanent central venous catheter. This delivery system can cause sepsis and thrombosis. Prostacyclin is unstable, and therefore has to be kept on ice during administration. Since it has a half-life of 3 to 5 minutes, the infusion has to be continuous, and interruption can be fatal. Other prostanoids have therefore been developed. Treprostinil can be given intravenously or subcutaneously, but the subcutaneous form can be very painful. An increased risk of sepsis with intravenous Remodulin has been reported by the CDC. Iloprost is also used in Europe intravenously and has a longer half life. Iloprost was the only inhaled form of prostacyclin approved for use in the US and Europe, until the inhaled form of treprostinil was approved by the FDA in July 2009.
Many pathways are involved in the abnormal proliferation and contraction of the smooth muscle cells of the pulmonary arteries in patients with pulmonary arterial hypertension. Three of these pathways are important since they have been targeted with drugs — endothelin receptor antagonists, phosphodiesterase type 5 (PDE-5) inhibitors, and prostacyclin derivatives.
People with the most severe heart failure may be candidates for ventricular assist devices (VAD). VADs have commonly been used as a bridge to heart transplantation, but have been used more recently as a destination treatment for advanced heart failure.
In select cases, heart transplantation can be considered. While this may resolve the problems associated with heart failure, the person must generally remain on an immunosuppressive regimen to prevent rejection, which has its own significant downsides. A major limitation of this treatment option is the scarcity of hearts available for transplantation.
The epidemiology of pulmonary heart disease (cor pulmonale) accounts for 7% of all heart disease in the U.S. According to Weitzenblum, et al., the mortality that is related to cor pulmonale is not easy to ascertain, as it is a complication of COPD.
Anticoagulant therapy is the mainstay of treatment. Acutely, supportive treatments, such as oxygen or analgesia, may be required. People are often admitted to hospital in the early stages of treatment, and tend to remain under inpatient care until the INR has reached therapeutic levels. Increasingly, however, low-risk cases are managed at home in a fashion already common in the treatment of DVT. Evidence to support one approach versus the other is weak.
Usually, anticoagulant therapy is the mainstay of treatment. Unfractionated heparin (UFH), low molecular weight heparin (LMWH), or fondaparinux is administered initially, while warfarin, acenocoumarol, or phenprocoumon therapy is commenced (this may take several days, usually while the patient is in the hospital). LMWH may reduce bleeding among people with pulmonary embolism as compared to UFH according to a systematic review of randomized controlled trials by the Cochrane Collaboration. According to the same review, LMWH reduced the incidence of recurrent thrombotic complications and reduced thrombus size when compared to heparin. There was no difference in overall mortality between participants treated with LMWH and those treated with unfractionated heparin.
Warfarin therapy often requires a frequent dose adjustment and monitoring of the international normalized ratio (INR). In PE, INRs between 2.0 and 3.0 are generally considered ideal. If another episode of PE occurs under warfarin treatment, the INR window may be increased to e.g. 2.5–3.5 (unless there are contraindications) or anticoagulation may be changed to a different anticoagulant e.g. LMWH.
In patients with an underlying malignancy, therapy with a course of LMWH is favored over warfarin; it is continued for six months, at which point a decision should be reached whether ongoing treatment is required.
Similarly, pregnant women are often maintained on low molecular weight heparin until at least six weeks after delivery to avoid the known teratogenic effects of warfarin, especially in the early stages of pregnancy.
Warfarin therapy is usually continued for 3–6 months, or "lifelong" if there have been previous DVTs or PEs, or none of the usual risk factors is present. An abnormal D-dimer level at the end of treatment might signal the need for continued treatment among patients with a first unprovoked pulmonary embolus. For those with small PEs (known as subsegmental PEs) the effects of anticoagulation is unknown as it has not been properly studied as of 2014.
Annuloaortic ectasia is a dilation of the proximal ascending aorta and aortic annulus. It may cause aortic regurgitation, thoracic aortic dissection, aneurysm and rupture. It is often associated with connective tissue diseases like Marfan syndrome and Ehlers Danlos Syndrome. It can also be a complication due to tertiary syphilis. In tertiary syphilis the aortic root becomes so dilated that the aortic valve becomes incompetent and cor bovinum results.
The term was first coined by the American heart surgeon Denton Cooley in 1961.
Due to Syphilitic aortitis (a complication of tertiary syphilis) the aortic valve ring becomes dilated. The free margins of valve cusps no longer approximate leading to aortic valve insufficiency. As blood regurgitates into the left ventricle between each systole, volume overload ensues and the ventricular wall hypertrophies in an attempt to maintain cardiac output and blood pressure. The massive ventricle can lead to a heart weighing over 1000 grams (the weight of a normal heart is about 350 grams), referred to as "Cor Bovinum" [Latin for cow's heart.]
Fluri and Gebbers define cor bovinum as a heart exceeding 500 g in weight. Looking through autopsies on Internal Medicine patients at the Kantonsspital Luzern, they found 415 cases out of 1181 autopsies in the two periods 1978-81 and 1997-2000. Cor bovinum was found in 25.3% of cases in the earlier period, with mean age at death 67.7 years, and in the later period 20.6% with mean age 74.3 years. The male female ratio was 4:1. "In 93% of all patients with CB, we found coronary atherosclerosis as a sign of high blood pressure and in 79% a COPD."
In 84% of cases the cause of death was directly related to the cor bovinum, but in 37% the cause of death was still unclear. They concluded that cor bovinum was a decreasing but still frequent autopsy finding. High blood pressure, COPD and male sex were the main risk factors. The decreasing incidence was ascribed to improved medical management: they mention treatments for high blood pressure and coronary artery disease, which suggests that "COPD" in their abstract refers to the latter.
Cor bovinum refers to a massive hypertrophy of the left ventricle of the heart due to volume overload, usually in earlier times in the context of tertiary syphilis but currently more often due to chronic aortic regurgitation, hypertensive and ischaemic heart disease.
Bilharzial cor pulmonale is the condition of right sided heart failure secondary to fibrosis and sclerosis of the pulmonary artery branches. It results from shifting of the "Schistosoma haematobium" ova from the pelvic and vescial plexus to the pulmonary artery branches where they settle and produce granuloma and fibrosis.
Bilharzial cor pulmonale occurs in "Schistosoma mansoni", when the portal pressure rises more than the systemic pressure. So blood will pass from the portal circulation to the systemic circulation carrying "Schistosoma mansoni" ova to reach the lungs.
This condition leads to Pulmonary hypertension, right ventricular hypertrophy and failure.
Treatment for this condition entails the maintenance of intravascular volume. Additionally, the following can be done as a means of managing FES in an individual:
- Albumin can be used for volume resuscitation
- Long bone fractures should be attended to immediately (surgery)
- Mechanical ventilation
Positive airway pressure, initially in the form of "continuous" positive airway pressure (CPAP), is a useful treatment for obesity hypoventilation syndrome, particularly when obstructive sleep apnea co-exists. CPAP requires the use during sleep of a machine that delivers a continuous positive pressure to the airways and preventing the collapse of soft tissues in the throat during breathing; it is administered through a mask on either the mouth and nose together or if that is not tolerated on the nose only (nasal CPAP). This relieves the features of obstructive sleep apnea and is often sufficient to remove the resultant accumulation of carbon dioxide. The pressure is increased until the obstructive symptoms (snoring and periods of apnea) have disappeared. CPAP alone is effective in more than 50% of people with OHS.
In some occasions, the oxygen levels are persistently too low (oxygen saturations below 90%). In that case, the hypoventilation itself may be improved by switching from CPAP treatment to an alternate device that delivers "bi-level" positive pressure: higher pressure during inspiration (breathing in) and a lower pressure during expiration (breathing out). If this too is ineffective in increasing oxygen levels, the addition of oxygen therapy may be necessary. As a last resort, tracheostomy may be necessary; this involves making a surgical opening in the trachea to bypass obesity-related airway obstruction in the neck. This may be combined with mechanical ventilation with an assisted breathing device through the opening.
Medroxyprogesterone acetate, a progestin, has been shown to improve the ventilatory response, but this has been poorly studied and is associated with an increased risk of thrombosis. Similarly, the drug acetazolamide can reduce bicarbonate levels, and thereby augment to normal ventilatory response, but this has been researched insufficiently to recommend wide application.
Macrolide antibiotics, such as erythromycin, are an effective treatment for DPB when taken regularly over an extended period of time. Clarithromycin or roxithromycin are also commonly used. The successful results of macrolides in DPB and similar lung diseases stems from managing certain symptoms through immunomodulation (adjusting the immune response), which can be achieved by taking the antibiotics in low doses. Treatment consists of daily oral administration of erythromycin for two to three years, an extended period that has been shown to dramatically improve the effects of DPB. This is apparent when an individual undergoing treatment for DPB, among a number of disease-related remission criteria, has a normal neutrophil count detected in BAL fluid, and blood gas (an arterial blood test that measures the amount of oxygen and carbon dioxide in the blood) readings show that free oxygen in the blood is within the normal range. Allowing a temporary break from erythromycin therapy in these instances has been suggested, to reduce the formation of macrolide-resistant "P. aeruginosa". However, DPB symptoms usually return, and treatment would need to be resumed. Although highly effective, erythromycin may not prove successful in all individuals with the disease, particularly if macrolide-resistant "P. aeruginosa" is present or previously untreated DPB has progressed to the point where respiratory failure is occurring.
With erythromycin therapy in DPB, great reduction in bronchiolar inflammation and damage is achieved through suppression of not only neutrophil proliferation, but also lymphocyte activity and obstructive mucus and water secretions in airways. The antibiotic effects of macrolides are not involved in their beneficial effects toward reducing inflammation in DPB. This is evident because the treatment dosage is much too low to fight infection, and in DPB cases with the occurrence of macrolide-resistant "P. aeruginosa", erythromycin therapy still reduces inflammation.
A number of factors are involved in suppression of inflammation by erythromycin and other macrolides. They are especially effective at inhibiting the proliferation of neutrophils, by diminishing the ability of interleukin 8 and leukotriene B4 to attract them. Macrolides also reduce the efficiency of adhesion molecules that allow neutrophils to stick to bronchiolar tissue linings. Mucus production in the airways is a major culprit in the morbidity and mortality of DPB and other respiratory diseases. The significant reduction of inflammation in DPB attributed to erythromycin therapy also helps to inhibit the production of excess mucus.
Evidence is insufficient to support the use of medications to treat obstructive sleep apnea. This includes the use of fluoxetine, paroxetine, acetazolamide and tryptophan among others.
A couple of medications are used to relieve pleurisy symptoms:
- Paracetamol (acetaminophen) or anti-inflammatory agents to control pain and decrease inflammation. Only indomethacin (brand name Indocin) has been studied with respect to relief of pleurisy.
- Codeine-based cough syrups to control the cough
There may be a role for the use of corticosteroids (for tuberculous pleurisy), tacrolimus (Prograf) and methotrexate (Trexall, Rheumatrex) in the treatment of pleurisy. Further studies are needed.
Ideally, the treatment of pleurisy is aimed at eliminating the underlying cause of the disease.
- If the pleural fluid is infected, treatment involves antibiotics and draining the fluid. If the infection is tuberculosis or from a fungus, treatment involves long-term use of antibiotics or antifungal medicines.
- If the fluid is caused by tumors of the pleura, it may build up again quickly after it is drained. Sometimes anti-tumor medicines will prevent further fluid buildup. If they don't, the doctor may seal the pleural space. This is called pleurodesis. Pleurodesis involves the drainage of all the fluid out of the chest through a chest tube. A substance is inserted through the chest tube into the pleural space. This substance irritates the surface of the pleura. This causes the two layers of the pleurae to squeeze shut so there is no room for more fluid to build up.
- Chemotherapy or radiation treatment also may be used to reduce the size of the tumors.
- If congestive heart failure is causing the fluid buildup, treatment usually includes diuretics and other medicines.
The treatment for pleurisy depends on its origin and is prescribed by a physician on a base of an individual assessment. Paracetamol (acetaminophen) and amoxicillin, or other antibiotics in case of bacterial infections, are common remedies dispensed by doctors to relieve the initial symptoms and pain in the chest, while viral infections are self-limited. Non-steroidal anti-inflammatory drugs (NSAIDs), preferably indometacin, are usually employed as pain control agents.
Untreated DPB leads to bronchiectasis, respiratory failure, and death. A journal report from 1983 indicated that untreated DPB had a five-year survival rate of 62.1%, while the 10-year survival rate was 33.2%. With erythromycin treatment, individuals with DPB now have a much longer life expectancy due to better management of symptoms, delay of progression, and prevention of associated infections like "P. aeruginosa". The 10-year survival rate for treated DPB is about 90%. In DPB cases where treatment has resulted in significant improvement, which sometimes happens after about two years, treatment has been allowed to end for a while. However, individuals allowed to stop treatment during this time are closely monitored. As DPB has been proven to recur, erythromycin therapy must be promptly resumed once disease symptoms begin to reappear. In spite of the improved prognosis when treated, DPB currently has no known cure.
There is evidence to show that steroids given to babies less than 8 days old can prevent bronchopulmonary dysplasia. However, the risks of treatment may outweigh the benefits.
It is unclear if starting steroids more than 7 days after birth is harmful or beneficial. It is thus recommended that they only be used in those who cannot be taken off of a ventilator.
Disease progression may be slowed with immunosuppressives and other medications, and esophageal reflux, pulmonary hypertension and Raynaud phenomenon may benefit from symptomatic treatment. However, there is no cure for this disease as there is no cure for scleroderma in general.