Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When treating iron-deficiency anemia, considerations of the proper treatment methods are done in light of the "cause and severity" of the condition. If the iron-deficiency anemia is a downstream effect of blood loss or another underlying cause, treatment is geared toward addressing the underlying cause when possible. In severe acute cases, treatment measures are taken for immediate management in the interim, such as blood transfusions or even intravenous iron.
Iron-deficiency anemia treatment for less severe cases includes dietary changes to incorporate iron-rich foods into regular oral intake. Foods rich in ascorbic acid (vitamin C) can also be beneficial, since ascorbic acid enhances iron absorption. Other oral options are iron supplements in the form of pills or drops for children.
As iron-deficiency anemia becomes more severe, or if the anemia does not respond to oral treatments, other measures may become necessary. In addition to the previously mentioned indication for intravenous iron or blood transfusions, intravenous iron may also be used when oral intake is not tolerated, as well as for other indications. Specifically, for those on dialysis, parenteral iron is commonly used. Individuals on dialysis who are taking forms of erythropoietin or some "erythropoiesis-stimulating agent" are given parenteral iron, which helps the body respond to the erythropoietin agents and produce red blood cells.
The various forms of treatment are not without possible adverse effects. Iron supplementation by mouth commonly causes negative gastrointestinal effects, including constipation. Intravenous iron can induce an allergic response that can be as serious as anaphylaxis, although different formulations have decreased the likelihood of this adverse effect.
Treatments for anemia depend on cause and severity. Vitamin supplements given orally (folic acid or vitamin B) or intramuscularly (vitamin B) will replace specific deficiencies.
In cases where oral iron has either proven ineffective, would be too slow (for example, pre-operatively) or where absorption is impeded (for example in cases of inflammation), parenteral iron can be used. The body can absorb up to 6 mg iron daily from the gastrointestinal tract. In many cases the patient has a deficit of over 1,000 mg of iron which would require several months to replace. This can be given concurrently with erythropoietin to ensure sufficient iron for increased rates of erythropoiesis.
Blood transfusion is sometimes used to treat iron deficiency with hemodynamic instability. Sometimes transfusions are considered for people who have chronic iron deficiency or who will soon go to surgery, but even if such people have low hemoglobin, they should be given oral treatment or intravenous iron.
Before commencing treatment, there should be definitive diagnosis of the underlying cause for iron deficiency. This is particularly the case in older patients, who are most susceptible to colorectal cancer and the gastrointestinal bleeding it often causes. In adults, 60% of patients with iron deficiency anemia may have underlying gastrointestinal disorders leading to chronic blood loss.
It is likely that the cause of the iron deficiency will need treatment as well.
Upon diagnosis, the condition can be treated with iron supplements. The choice of supplement will depend upon both the severity of the condition, the required speed of improvement (e.g. if awaiting elective surgery) and the likelihood of treatment being effective (e.g. if has underlying IBD, is undergoing dialysis, or is having ESA therapy).
Examples of oral iron that are often used are ferrous sulfate, ferrous gluconate, or amino acid chelate tablets. Recent research suggests the replacement dose of iron, at least in the elderly with iron deficiency, may be as little as 15 mg per day of elemental iron.
Occasionally, the anemia is so severe that support with transfusion is required. These patients usually do not respond to erythropoietin therapy. Some cases have been reported that the anemia is reversed or heme level is improved through use of moderate to high doses of pyrodoxine (vitamin B). In severe cases of SBA, bone marrow transplant is also an option with limited information about the success rate. Some cases are listed on MedLine and various other medical sites. In the case of isoniazid-induced sideroblastic anemia, the addition of B is sufficient to correct the anemia. Desferrioxamine, a chelating agent, is used to treat iron overload from transfusions.
Therapeutic phlebotomy can be used to manage iron overload.
It is unclear if screening pregnant women for iron-deficiency anemia during pregnancy improves outcomes in the United States. The same holds true for screening children who are "6 to 24 months" old.
Iron overload is an unavoidable consequence of chronic transfusion therapy, necessary for patients with beta thalassemia. Iron chelation is a medical therapy that avoids the complications of iron overload. The iron overload can be removed by Deferasirox, an oral iron chelator, which has a dose- dependent effect on iron burden. Every unit of transfused blood contains 200–250 mg of iron and the body has no natural mechanism to remove excess iron. Deferasirox is a vital part in the patients health after blood transfusions. During normal iron homeostasis the circulating iron is bound to transferrin, but with an iron overload, the ability for transferrin to bind iron is exceeded and non-transferrin bound iron is formed. It represents a potentially toxic iron form due to its high propensity to induce oxygen species and is responsible for cellular damage. The prevention of iron overload protects patients from morbidity and mortality. The primary aim is to bind to and remove iron from the body and a rate equal to the rate of transfusional iron input or greater than iron input. During clinical trails patients that received Deferasirox experienced no drug-related neutropenia or agranulocytosis, which was present with other iron chelators. Its long half life requires it to be taken once daily and provides constant chelation. Cardiac failure is a main cause of illness from transfusional iron overload but deferasirox demonstrated the ability to remove iron from iron-loaded myocardial cells protecting beta thalassemia patients from effects of required blood transfusions.
Definitive therapy depends on the cause:
- Symptomatic treatment can be given by blood transfusion, if there is marked anemia. A positive Coombs test is a relative contraindication to transfuse the patient. In cold hemolytic anemia there is advantage in transfuse warmed blood
- In severe immune-related hemolytic anemia, steroid therapy is sometimes necessary.
- In steroid resistant cases, consideration can be given to rituximab or addition of an immunosuppressant ( azathioprine, cyclophosphamide)
- Association of methylprednisolone and intravenous immunoglobulin can control hemolysis in acute severe cases
- Sometimes splenectomy can be helpful where extravascular hemolysis, or hereditary spherocytosis, is predominant (i.e., most of the red blood cells are being removed by the spleen).
Multiple blood transfusions can result in iron overload. The iron overload related to thalassemia may be treated by chelation therapy with the medications deferoxamine, deferiprone, or deferasirox. These treatments have resulted in improving life expectancy in those with thalassemia major.
Deferoxamine is only effective via daily injections which makes its long-term use more difficult. It has the benefit of being inexpensive and decent long-term safety. Adverse effects are primary skin reactions around the injection site and hearing loss.
Deferasirox has the benefit of being an oral medication. Common side effects include: nausea, vomiting and diarrhea. It however is not effective in everyone and is probably not suitable in those with significant cardiac issues related to iron overload. The cost is also significant.
Deferiprone is a medication that is given by mouth. Nausea, vomiting, and diarrhea are relatively common with its use. It is available in both Europe and the United States. It appears to be the most effective agent when the heart is significantly involved.
There is no evidence from randomized controlled trial to support zinc supplementation in thalassemia.
Affected children require regular lifelong blood transfusion and can have complications, which may involve the spleen. Bone marrow transplants can be curative for some children. Patients receive frequent blood transfusions that lead to or potentiate iron overload. Iron chelation treatment is necessary to prevent damage to internal organs. Advances in iron chelation treatments allow patients with thalassemia major to live long lives with access to proper treatment. Popular chelators include deferoxamine and deferiprone.
The most common patient deferoxamine complaint is that they are painful and inconvenient. The oral chelator deferasirox was approved for use in 2005 in some countries, it offers some hope with compliance at a higher cost. Bone marrow transplantation is the only cure and is indicated for patients with severe thalassemia major. Transplantation can eliminate a patient's dependence on transfusions. Absent a matching donor, a savior sibling can be conceived by preimplantation genetic diagnosis (PGD) to be free of the disease as well as to match the recipient's human leukocyte antigen (HLA) type.
Scientists at Weill Cornell Medical College have developed a gene therapy strategy that could feasibly treat both beta-thalassemia and sickle cell disease. The technology is based on delivery of a lentiviral vector carrying both the human β-globin gene and an ankyrin insulator to improve gene transcription and translation, and boost levels of β-globin production.
People with severe thalassemia require medical treatment. A blood transfusion regimen was the first measure effective in prolonging life.
The ideal treatment for anemia of chronic disease is to treat the chronic disease successfully, but this is rarely possible.
Parenteral iron is increasingly used for anemia in chronic renal disease and inflammatory bowel disease.
Erythropoietin can be helpful, but this is costly and may be dangerous. Erythropoietin is advised either in conjunction with adequate iron replacement which in practice is intravenous, or when IV iron has proved ineffective.
There is no consensus on how to treat LID but one of the options is to treat it as an iron-deficiency anemia with ferrous sulfate (Iron(II) sulfate) at a dose of 100 mg x day in two doses (one at breakfast and the other at dinner) or 3 mg x Kg x day in children (also in two doses) during two or three months. The ideal would be to increase the deposits of body iron, measured as levels of ferritin in serum, trying to achieve a ferritin value between 30 and 100 ng/mL. Another clinical study has shown an increase of ferritin levels in those taking iron compared with others receiving a placebo from persons with LID. With ferritin levels higher than 100 ng/mL an increase in infections, etc. has been reported. Another way to treat LID is with an iron rich diet and in addition ascorbic acid or Vitamin C, contained in many types of fruits as oranges, kiwifruits, etc. that will increase 2 to 5-fold iron absorption.
Sideroblastic anemias are often described as responsive or non-responsive in terms of increased hemoglobin levels to pharmacological doses of vitamin B.
1- Congenital: 80% are responsive, though the anemia does not completely resolve.
2- Acquired clonal: 40% are responsive, but the response may be minimal.
3- Acquired reversible: 60% are responsive, but course depends on treatment of the underlying cause.
Severe refractory sideroblastic anemias requiring regular transfusions and/or that undergo leukemic transformation (5-10%) significantly reduce life expectancy.
Although research is ongoing, at this point there is no cure for the genetic defect that causes hereditary spherocytosis. Current management focuses on interventions that limit the severity of the disease. Treatment options include:
- Splenectomy: As in non-hereditary spherocytosis, acute symptoms of anemia and hyperbilirubinemia indicate treatment with blood transfusions or exchanges and chronic symptoms of anemia and an enlarged spleen indicate dietary supplementation of folic acid and splenectomy, the surgical removal of the spleen. Splenectomy is indicated for moderate to severe cases, but not mild cases. To decrease the risk of sepsis, post-splenectomy spherocytosis patients require immunization against the influenza virus, encapsulated bacteria such as Streptococcus pneumoniae and meningococcus, and prophylactic antibiotic treatment. However, the use of prophylactic antibiotics, such as penicillin, remains controversial.
- Partial splenectomy: Since the spleen is important for protecting against encapsulated organisms, sepsis caused by encapsulated organisms is a possible complication of splenectomy. The option of partial splenectomy may be considered in the interest of preserving immune function. Research on outcomes is currently limited, but favorable.
- Surgical removal of the gallbladder may be necessary.
In terms of treatment of atransferrinemia, iron supplements (oral iron therapy) are the preferred choice, one finds that RBC transfusions are very infrequently needed.
Treatment consists of frequent blood transfusions and chelation therapy. Potential cures include bone marrow transplantation and gene therapy.
The amount of iron ingested may give a clue to potential toxicity. The therapeutic dose for iron deficiency anemia is 3–6 mg/kg/day. Toxic effects begin to occur at doses above 10–20 mg/kg of elemental iron. Ingestions of more than 50 mg/kg of elemental iron are associated with severe toxicity.
- A 325-mg tablet of ferrous sulfate heptahydrate has 65 mg (20%) of elemental iron
- A 325-mg tablet of ferrous gluconate has 39 mg (12%) of elemental iron
- A 325-mg tablet of ferrous fumarate has 107.25 mg (33%) of elemental iron
- 200 mg ferrous sulfate, dried, has 65 mg (33%) of elemental iron
In terms of blood values, iron levels above 350–500 µg/dL are considered toxic, and levels over 1000 µg/dL indicate severe iron poisoning.
Gene therapy, as well as, bone marrow transplant are also possible treatments for the disorder, but each have their own risks at this point in time. Bone marrow transplantation is the more used method between the two, whereas researchers are still trying to definitively establish the results of gene therapy treatment. It generally requires a 10/10 HLA matched donor, however, who is usually a sibling. As most patients do not have this, they must rely on gene therapy research to potentially provide them with an alternative. CDA at both clinical and genetic aspects are part of a heterogeneous group of genetic conditions. Gene therapy is still experimental and has largely only been tested in animal models until now. This type of therapy has promise, however, as it allows for the autologous transplantation of the patient's own healthy stem cells rather than requiring an outside donor, thereby bypassing any potential for graft vs. host disease (GVHD).
In the United States, the FDA approved clinical trials on Beta thalassemia patients in 2012. The first study, which took place in July 2012, recruited human subjects with thalassemia major, and ended in 2014.
Treatment of individuals with CDA usually consist of frequent blood transfusions, but this can vary depending on the type that the individual has. Patients report going every 2–3 weeks for blood transfusions. In addition, they must undertake chelation therapy to survive; either deferoxamine, deferasirox, or deferiprone to eliminate the excess iron that accumulates. Removal of the spleen and gallbladder are common. Hemoglobin levels can run anywhere between 8.0 g/dl and 11.0 g/dl in untransfused patients, the amount of blood received by the patient is not as important as their baseline pre-transfusion hemoglobin level. This is true for ferritin levels and iron levels in the organs as well, it is important for patients to go regularly for transfusions in order to maximize good health, normal ferritin levels run anywhere between 24 and 336 ng/ml, hematologists generally do not begin chelation therapy until ferritin levels reach at least 1000 ng/ml. It is more important to check iron levels in the organs through MRI scans, however, than to simply get regular blood tests to check ferritin levels, which only show a trend, and do not reflect actual organ iron content.
Later stage treatment consists of cleaning the iron from the blood, using a chelating agent such as deferoxamine. If this fails then dialysis is the next step.
The treatment is some form of Vitamin E supplementation.
Aggressive vitamin E replacement therapy has been shown to either prevent, halt or improve visual abnormalities.
Where venesection is not possible, long-term administration of desferrioxamine mesylate is useful. Desferrioxamine is an iron-chelating compound, and excretion induced by desferrioxamine is enhanced by administration of Vitamin C. It cannot be used during pregnancy or breast-feeding due to risk of defects in the child.
Copper deficiency is a very rare disease and is often misdiagnosed several times by physicians before concluding the deficiency of copper through differential diagnosis (copper serum test and bone marrow biopsy are usually conclusive in diagnosing copper deficiency). On average, patients are diagnosed with copper deficiency around 1.1 years after their first symptoms are reported to a physician.
Copper deficiency can be treated with either oral copper supplementation or intravenous copper. If zinc intoxication is present, discontinuation of zinc may be sufficient to restore copper levels back to normal, but this usually is a very slow process. People who suffer from zinc intoxication will usually have to take copper supplements in addition to ceasing zinc consumption. Hematological manifestations are often quickly restored back to normal. The progression of the neurological symptoms will be stopped by appropriate treatment, but often with residual neurological disability.