Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no treatment of conjugate gaze palsy itself, so the disease or condition causing the gaze palsy must be treated, likely by surgery. As stated in the causes section, the gaze palsy may be due to a lesion caused by stroke or a condition. Some of the conditions such as Progressive supra nuclear palsy are not curable, and treatment only includes therapy to regain some tasks, not including gaze control. Other conditions such as Niemann-Pick disease type C have limited drug therapeutic options. Stroke victims with conjugate gaze palsies may be treated with intravenous therapy if the patent presents early enough, or with a surgical procedure for other cases.
Although no cure exists, there are many different treatments which are currently being used to help control symptoms. These include short term treatment with some drugs (such as Botox) which relax the muscles, use of temperature changes to control muscle tremors, and a balanced approach of coordinated care and support involving physical therapists, orthopedic surgeons, and psychiatrists.
Because there is no cure for ataxic cerebral palsy, current methods of treatment are diverse, often consisting of multiple focuses designed to limit the severity of symptoms. Many children suffering from ataxic cerebral palsy are treated by teams consisting of individuals from numerous disciplines, including physical therapists, occupational therapist, orthopedic surgeons, and psychiatrists. Treatment by such teams involves multiple approaches. Providing a primary care medical home to support children suffering from common symptoms of nutritional deficiencies, pain, dental care, bowel and bladder continence, and orthopedic complications is an essential aspect of treatment. In addition, utilizing diagnostic techniques to identify the nature and severity of brain abnormalities has become increasingly beneficial for treatment in recent years.
Different medications have been used to temporarily treat ataxic cerebral palsy. Medications like primidone and benzodiazepine, while not recommended for long term use, can alleviate some of the tremor symptoms. Botox which relaxes tightened muscles has been effective in treating voice, hand and head tremors. A few recently published papers outlined a potential method for treating intention tremor which consisted of cooling the forearm by wrapping it in a cryomanchet using a circulating fluid. After the treatment most patients experienced reduced tremor for up to half an hour. This practical, however short-term treatment can facilitate performing normal daily activities like applying make up, eating, or signing documents. This potential treatment method is also significant in that it reduces one’s reliance on caregivers.
Medications that impede the release of excitatory neurotransmitters have been used to control or prevent spasms. Treatment with intrathecal baclofen, a gamma-aminobutyric acid (GABA) agonist, decreases muscle tone and has been shown to decrease the frequency of muscle spasms in ADCP patients. Tetrabenazine, a drug commonly used in the treatment of Huntington's disease, has been shown to be effective treating chorea.
Physical therapy and Occupational Therapy are staple treatments of ADCP. Physical therapy is initiated soon after diagnosis and typically focuses on trunk strength and maintaining posture. Physical therapy helps to improve mobility, range of motion, functional ability, and quality of life. Specific exercises and activities prescribed by a therapist help to prevent muscles from deteriorating or becoming locked in position and help to improve coordination. Occupational therapy interventions for children with CP can include feeding, dressing, bathing, toileting, grooming, pencil grasp and handwriting skills, play, and use of adaptive equipment.
Current forms of prevention are focused during pregnancy, while others are focused immediately after birth. Some methods that have been used include prolonging the pregnancy using interventions such as 17-alpha progesterone, limiting the number of gestations during pregnancy (for pregnancies induced by assistive reproductive technology), antenatal steroid for mothers likely to deliver prematurely, high caffeine for premature births with extremely low birth weights.
Since pseudobulbar palsy is a syndrome associated with other diseases, treating the underlying disease may eventually reduce the symptoms of pseudobulbar palsy.
Possible pharmacological interventions for pseudobulbar affect include the tricyclic antidepressants, serotonin reuptake inhibitors, and a novel approach utilizing dextromethorphan and quinidine sulfate. Nuedexta is an FDA approved medication for pseudobulbar affect. Dextromethorphan, an N-methyl-D-aspartate receptor antagonist, inhibits glutamatergic transmission in the regions of the brainstem and cerebellum, which are hypothesized to be involved in pseudobulbar symptoms, and acts as a sigma ligand, binding to the sigma-1 receptors that mediate the emotional motor expression.
Corticosteroids such as prednisone improve recovery at 6 months and are thus recommended. Early treatment (within 3 days after the onset) is necessary for benefit with a 14% greater probability of recovery.
This is most commonly achieved through the use of fresnel prisms. These slim flexible plastic prisms can be attached to the patient's glasses, or to plano glasses if the patient has no refractive error, and serve to compensate for the inward misalignment of the affected eye. Unfortunately, the prism only correct for a fixed degree of misalignment and, because the affected individual's degree of misalignment will vary depending upon their direction of gaze, they may still experience diplopia when looking to the affected side. The prisms are available in different strengths and the most appropriate one can be selected for each patient. However, in patients with large deviations, the thickness of the prism required may reduce vision so much that binocularity is not achievable. In such cases it may be more appropriate simply to occlude one eye temporarily. Occlusion would never be used in infants though both because of the risk of inducing stimulus deprivation amblyopia and because they do not experience diplopia.
Other management options at this initial stage include the use of botulinum toxin, which is injected into the ipsilateral medial rectus (botulinum toxin therapy of strabismus). The use of BT serves a number of purposes. Firstly, it helps to prevent the contracture of the medial rectus which might result from its acting unopposed for a long period. Secondly, by reducing the size of the deviation temporarily it might allow prismatic correction to be used where this was not previously possible, and, thirdly, by removing the pull of the medial rectus it may serve to reveal whether the palsy is partial or complete by allowing any residual movement capability of the lateral rectus to operate. Thus, the toxin works both therapeutically, by helping to reduce symptoms and enhancing the prospects for fuller ocular movements post-operatively, and diagnostically, by helping to determine the type of operation most appropriate for each patient.
The first aims of management should be to identify and treat the cause of the condition, where this is possible, and to relieve the patient's symptoms, where present. In children, who rarely appreciate diplopia, the aim will be to maintain binocular vision and, thus, promote proper visual development.
Thereafter, a period of observation of around 9 to 12 months is appropriate before any further intervention, as some palsies will recover without the need for surgery.
Physiotherapy can be beneficial to some individuals with Bell’s palsy as it helps to maintain muscle tone of the affected facial muscles and stimulate the facial nerve. It is important that muscle re-education exercises and soft tissue techniques be implemented prior to recovery in order to help prevent permanent contractures of the paralyzed facial muscles. To reduce pain, heat can be applied to the affected side of the face. There is no high quality evidence to support the role of electrical stimulation for Bell's palsy.
There is no known cure for PSP and management is primarily supportive. PSP cases are often split into two subgroups, PSP-Richardson, the classic type, and PSP-Parkinsonism, where a short-term response to levodopa can be obtained. Dyskinesia is an occasional but rare complication of treatment. Amantadine is also sometimes helpful. After a few years the Parkinsonian variant tends to take on Richardson features. Other variants have been described. Botox can be used to treat neck dystonia and blephrospasm, but this can aggravate dysphagia.
Two studies have suggested that rivastigmine may help with cognitive aspects, but the authors of both studies have suggested a larger sampling be used. There is some evidence that the hypnotic zolpidem may improve motor function and eye movements, but only from small-scale studies.
The prognosis of a lesion in the visual neural pathways that causes a conjugate gaze palsy varies greatly. Depending on the nature of the lesion, recovery may happen rapidly or recovery may never progress. For example, optic neuritis, which is caused by inflammation, may heal in just weeks, while patients with an ischemic optic neuropathy may never recover.
Congenital fourth cranial nerve palsy can be treated with strabismus surgery, where muscle attachment sites on the globe are modified to realign the eyes. Some eye doctors prefer conservative or no management of congenital fourth nerve palsy.
Other eye doctors recommend surgery early in a patient's life to prevent the compensatory torticollis and facial asymmetry that develop with age.
Prism lenses set to make minor optical changes in the vertical alignment may be prescribed instead of or after surgery to fine-tune the correction. Prism lenses do not address torsional misalignment and this may limit their use in certain cases. An additional consideration of prism lenses is that they must be worn at all times. Prism lenses reduce vertical fusional demands by allowing the eyes to rest in their vertically misaligned state. When they are removed the patient may experience vertical diplopia they find hard to resolve due to the rested state of their eyes.
Cases of congenital fourth nerve palsy vary in magnitude and way they affect the motion of the superior oblique muscle. Therefore different surgeries are available dependent upon the type of misalignment. Sometimes surgery on more than one eye muscle is required. In some simpler, unilateral cases a single surgery may suffice. In these cases the main problem is that the inferior oblique muscle of the same eye acts unopposed by the weakened superior oblique muscle, pulling the eye up. An example of a safe and effective procedure is a disinsertion of the inferior oblique muscle to allow it to reattach itself further down the globe of the eye. This acts to 'weaken' its action and allow the eye to move back into a more neutral alignment.
In all cases of congenital fourth nerve palsy, it is important to see an experienced strabismologist about management/treatment options. A strabismologist is an ophthalmologist (eye doctor) specialising in eye movement disorders.
The eye findings of Parinaud's Syndrome generally improve slowly over months, especially with resolution of the causative factor; continued resolution after the first 3–6 months of onset is uncommon. However, rapid resolution after normalization of intracranial pressure following placement of a ventriculoperitoneal shunt has been reported.
Treatment is primarily directed towards etiology of the dorsal midbrain syndrome. A thorough workup, including neuroimaging is essential to rule out anatomic lesions or other causes of this syndrome. Visually significant upgaze palsy can be relieved with bilateral inferior rectus recessions. Retraction nystagmus and convergence movement are usually improved with this procedure as well.
Congenital nystagmus has traditionally been viewed as non-treatable, but medications have been discovered in recent years that show promise in some patients. In 1980, researchers discovered that a drug called baclofen could effectively stop periodic alternating nystagmus. Subsequently, gabapentin, an anticonvulsant, was found to cause improvement in about half the patients who received it to relieve symptoms of nystagmus. Other drugs found to be effective against nystagmus in some patients include memantine, levetiracetam, 3,4-diaminopyridine (available in the US to eligible patients with downbeat nystagmus at no cost under an expanded access program), 4-aminopyridine, and acetazolamide. Several therapeutic approaches, such as contact lenses, drugs, surgery, and low vision rehabilitation have also been proposed. For example, it has been proposed that mini-telescopic eyeglasses suppress nystagmus.
Surgical treatment of Congenital Nystagmus is aimed at improving the abnormal head posture, simulating artificial divergence or weakening the horizontal recti muscles. Clinical trials of a surgery to treat nystagmus (known as tenotomy) concluded in 2001. Tenotomy is now being performed regularly at numerous centres around the world. The surgery developed by Louis F. Dell'Osso Ph.D. aims to reduce the eye shaking (oscillations), which in turn tends to improve visual acuity.
Acupuncture has conflicting evidence as to having beneficial effects on the symptoms of nystagmus. Benefits have been seen in treatments where acupuncture points of the neck were used, specifically points on the sternocleidomastoid muscle. Benefits of acupuncture for treatment of nystagmus include a reduction in frequency and decreased slow phase velocities which led to an increase in foveation duration periods both during and after treatment. By the standards of evidence-based medicine, the quality of these studies can be considered poor (for example, Ishikawa has a study sample size of just six, is unblinded and without proper control), and given high quality studies showing that acupuncture has no effect beyond placebo, the results of these studies have to be considered clinically irrelevant until higher quality studies are produced.
Physical therapy or Occupational therapy is also used to treat nystagmus. Treatment consist of learning compensatory strategies to take over for the impaired system.
PBP is aggressive and relentless, and there were no treatments for the disease as of 2005. However, early detection of PBP is the optimal scenario in which doctors can map out a plan for management of the disease. This typically involves symptomatic treatments that are frequently used in many lower motor disorders.
Physiotherapy
To increase strength of muscle
To improve muscle functions
Electrical modalities =Electric stimulation.etc.
Occupational Therapy
Positioning, ROM, Sensory, Splinting
Patients with PSP usually seek or are referred to occupational therapy, speech-language pathology for motor speech changes typically a spastic-ataxic dysarthria, and physical therapy for balance and gait problems with reports of frequent falls. Evidence-based approaches to rehabilitation in PSP are lacking, and currently the majority of research on the subject consists of case reports involving only a small number of patients.
Case reports of rehabilitation programs for patients with PSP generally include limb-coordination activities, tilt-board balancing, gait training, strength training with progressive resistive exercises and isokinetic exercises and stretching of the neck muscles. While some case reports suggest that physiotherapy can offer improvements in balance and gait of patients with PSP, the results cannot be generalized across all patients with PSP as each case report only followed one or two patients. The observations made from these case studies can be useful, however, in helping to guide future research concerning the effectiveness of balance and gait training programs in the management of PSP.
Individuals with PSP are often referred to occupational therapists to help manage their condition and to help enhance their independence. This may include being taught to use mobility aids. Due to their tendency to fall backwards, the use of a walker, particularly one that can be weighted in the front, is recommended over a cane. The use of an appropriate mobility aid will help to decrease the individual’s risk of falls and make them safer to ambulate independently in the community.
Due to their balance problems and irregular movements individuals will need to spend time learning how to safely transfer in their homes as well as in the community. This may include rising from and sitting in chairs safely.
Due to the progressive nature of this disease, all individuals eventually lose their ability to walk and will need to progress to using a wheelchair. Severe dysphagia often follows, and at this point death is often a matter of months.
There is no definite treatment.
Because syphilis may be an underlying cause, it should be treated.
Treatment includes penicillin g benzathine 2.4mU IM as a single dose
Or Doxycycline (100 mg PO aid)for those being allergic to penicillin.
Treatment is usually unnecessary. In severe cases, surgery with a bilateral levator excision and frontalis brow suspension may be used.
Over time, the approach to CP management has shifted away from narrow attempts to fix individual physical problems such as spasticity in a particular limb to making such treatments part of a larger goal of maximizing the person's independence and community engagement. Much of childhood therapy is aimed at improving gait and walking. Approximately 60% of people with CP are able to walk independently or with aids at adulthood. However, the evidence base for the effectiveness of intervention programs reflecting the philosophy of independence has not yet caught up: effective interventions for body structures and functions have a strong evidence base, but evidence is lacking for effective interventions targeted toward participation, environment, or personal factors. There is also no good evidence to show that an intervention that is effective at the body-specific level will result in an improvement at the activity level, or vice versa. Although such cross-over benefit might happen, not enough high-quality studies have been done to demonstrate it.
Because cerebral palsy has "varying severity and complexity" across the lifespan, it can be considered a collection of conditions for management purposes. A multidisciplinary approach for cerebral palsy management is recommended, focusing on "maximising individual function, choice and independence" in line with the International Classification of Functioning, Disability and Health's goals. The team may include a paediatrician, a health visitor, a social worker, a physiotherapist, an orthotist, a speech and language therapist, an occupational therapist, a teacher specialising in helping children with visual impairment, an educational psychologist, an orthopaedic surgeon, a neurologist and a neurosurgeon.
Various forms of therapy are available to people living with cerebral palsy as well as caregivers and parents. Treatment may include one or more of the following: physical therapy; occupational therapy; speech therapy; water therapy; drugs to control seizures, alleviate pain, or relax muscle spasms (e.g. benzodiazepines); surgery to correct anatomical abnormalities or release tight muscles; braces and other orthotic devices; rolling walkers; and communication aids such as computers with attached voice synthesisers. A Cochrane review published in 2004 found a trend toward benefit of speech and language therapy for children with cerebral palsy, but noted the need for high quality research. A 2013 systematic review found that many of the therapies used to treat CP have no good evidence base; the treatments with the best evidence are medications (anticonvulsants, botulinum toxin, bisphosphonates, diazepam), therapy (bimanual training, casting, constraint-induced movement therapy, context-focused therapy, fitness training, goal-directed training, hip surveillance, home programmes, occupational therapy after botulinum toxin, pressure care) and surgery (selective dorsal rhizotomy).
Although treatment may be unnecessary, there may be social implications, especially in young children when venturing from a supportive home environment to a public environment (e.g., starting school). Continued support, including monitoring behavior and educating the child about his or her appearance as seen by others, is encouraged. Gradual or sudden withdrawal from interaction with others is a sign that may or may not be related to such behavior. Studies are being conducted to elucidate these implications.
There is currently no defined treatment to ameliorate the muscle weakness of CPEO. Treatments used to treat other pathologies causing ophthalmoplegia has not been shown to be effective.
Experimental treatment with tetracycline has been used to improve ocular motility in one patient. Coenzyme Q has also been used to treat this condition. However, most neuro-ophthalmologists do not ascribe to any treatment.
Ptosis associated with CPEO may be corrected with surgery to raise the lids, however due to weakness of the orbicularis oculi muscles, care must be taken not to raise the lids in excess causing an inability to close the lids. This results in an exposure keratopathy. Therefore, rarely should lid surgery be performed and only by a neuro-ophthalmologist familiar with the disease.
The most common strabismus finding is large angle exotropia which can be treated by maximal bilateral eye surgery, but due to the progressive nature of the disease, strabismus may recur. Those that have diplopia as a result of asymmetric ophthalmoplegia may be corrected with prisms or with surgery to create a better alignment of the eyes.
Currently, there are no treatments prescribed for PVL. All treatments administered are in response to secondary pathologies that develop as a consequence of the PVL. Because white matter injury in the periventricular region can result in a variety of deficits, neurologists must closely monitor infants diagnosed with PVL in order to determine the severity and extent of their conditions.
Patients are typically treated with an individualized treatment. It is crucial for doctors to observe and maintain organ function: visceral organ failure can potentially occur in untreated patients. Additionally, motor deficits and increased muscle tone are often treated with individualized physical and occupational therapy treatments.
In many cases recovery happens spontaneously and no treatment is needed. This spontaneous recovery can occur because distance between the injury location and the deltoid muscle is small. Spontaneous recovery may take as long as 12 months.
In order to combat pain and inflammation of nerves, medication may be prescribed.
Surgery is an option, but it has mixed results within the literature and is usually avoided because only about half of people who undergo surgery see any positive results from it. Some suggest that surgical exploration should be considered if no recovery occurs after 3 to 6 months. Some surgical options include nerve grafting, neurolysis, or nerve reconstruction. Surgery results are typically better for younger patients (under 25) and for nerve grafts less than six centimeters.
For some, recovery does not occur and surgery is not possible. In these cases, most patients’ surrounding muscles can compensate, allowing them to gain a satisfactory range of motion back. Physical therapy or Occupational therapy will help retrain and gain muscle tone back.