Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Those diagnosed are usually treated with taking a low dose (80–100 mg) Aspirin a day. Anticoagulants (e.g. Warfarin, Coumadin) or clopidogrel (Plavix) are often additionally prescribed following formation of a medically significant clot. Thrombelastography is more commonly being used to diagnose hypercoagulability and monitor anti-platelet therapy.
Protamine reverses the effect of unfractionated heparin, but only partially binds to and reverses LMWH. A dose of 1 mg protamine / 100 IU LMWH reverses 90% of its anti-IIa and 60% of anti-Xa activity, but the clinical effect of the residual anti-Xa activity is not known. Both anti-IIa and anti-Xa activity may return up to three hours after protamine reversal, possibly due to release of additional LMWH from depot tissues.
Often, this disease is treated by giving aspirin to inhibit platelet activation, and/or warfarin as an anticoagulant. The goal of the prophylactic treatment with warfarin is to maintain the patient's INR between 2.0 and 3.0. It is not usually done in patients who have had no thrombotic symptoms.
Anticoagulation appears to prevent miscarriage in pregnant women. In pregnancy, low molecular weight heparin and low-dose aspirin are used instead of warfarin because of warfarin's teratogenicity. Women with recurrent miscarriage are often advised to take aspirin and to start low molecular weight heparin treatment after missing a menstrual cycle. In refractory cases plasmapheresis may be used.
Anticoagulant therapy with LMWH is not usually monitored. LMWH therapy does not affect the prothrombin time (PT) or the INR, and anti-Xa levels are not reliable. It can prolong the partial thromboplastin time (APTT) in some women, but still, the APTT is not useful for monitoring.
To check for any thrombocytopenia, platelet count should be checked prior to commencing anticoagulant therapy, then seven to 10 days after commencement, and monthly thereafter. Platelet count should also be checked if unexpected bruising or bleeding occurs.
A minority of patients can be treated medically with sodium restriction, diuretics to control ascites, anticoagulants such as heparin and warfarin, and general symptomatic management. The majority of patients require further intervention. Milder forms of Budd–Chiari may be treated with surgical shunts to divert blood flow around the obstruction or the liver itself. Shunts must be placed early after diagnosis for best results. The TIPS is similar to a surgical shunt: it accomplishes the same goal but has a lower procedure-related mortality—a factor that has led to a growth in its popularity. If all the hepatic veins are blocked, the portal vein can be approached via the intrahepatic part of inferior vena cava, a procedure called DIPS (direct intrahepatic portocaval shunt). Patients with stenosis or vena caval obstruction may benefit from angioplasty. Limited studies on thrombolysis with direct infusion of urokinase and tissue plasminogen activator into the obstructed vein have shown moderate success in treating Budd–Chiari syndrome; however, it is not routinely attempted.
Liver transplantation is an effective treatment for Budd–Chiari. It is generally reserved for patients with fulminant liver failure, failure of shunts or progression of cirrhosis that reduces the life expectancy to 1 year. Long-term survival after transplantation ranges from 69–87%. The most common complications of transplant include rejection, arterial or venous thromboses and bleeding due to anticoagulation. Up to 10% of patients may have a recurrence of Budd–Chiari syndrome after the transplant.
There is no specific treatment for thrombophilia, unless it is caused by an underlying medical illness (such as nephrotic syndrome), where the treatment of the underlying disease is needed. In those with unprovoked and/or recurrent thrombosis, or those with a high-risk form of thrombophilia, the most important decision is whether to use anticoagulation medications, such as warfarin, on a long-term basis to reduce the risk of further episodes. This risk needs to weighed against the risk that the treatment will cause significant bleeding, as the reported risk of major bleeding is over 3% per year, and 11% of those with major bleeding may die as a result.
Apart from the abovementioned forms of thrombophilia, the risk of recurrence after an episode of thrombosis is determined by factors such as the extent and severity of the original thrombosis, whether it was provoked (such as by immobilization or pregnancy), the number of previous thrombotic events, male sex, the presence of an inferior vena cava filter, the presence of cancer, symptoms of post-thrombotic syndrome, and obesity. These factors tend to be more important in the decision than the presence or absence of a detectable thrombophilia.
Those with antiphospholipid syndrome may be offered long-term anticoagulation after a first unprovoked episode of thrombosis. The risk is determined by the subtype of antibody detected, by the antibody titer (amount of antibodies), whether multiple antibodies are detected, and whether it is detected repeatedly or only on a single occasion.
Women with a thrombophilia who are contemplating pregnancy or are pregnant usually require alternatives to warfarin during pregnancy, especially in the first 13 weeks, when it may produce abnormalities in the unborn child. Low molecular weight heparin (LMWH, such as enoxaparin) is generally used as an alternative. Warfarin and LMWH may safely be used in breastfeeding.
When women experience recurrent pregnancy loss secondary to thrombophilia, some studies have suggested that low molecular weight heparin reduces the risk of miscarriage. When the results of all studies are analysed together, no statistically signifiant benefit could be demonstrated.
There are several treatments available for bleeding due to factor X deficiency, however a specifi FX concentrate is not available (2009).
1. Prothrombin complex concentrate (PCC) supplies FX with a risk of thrombosis.
2. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
3. If vitamin K levels are low, vitamin K can be supplied orally or parenterally.
Treatment of FX deficiency in amyloidosis may be more complex and involve surgery (splenectomy) and chemotherapy.
The first element of treatment is usually to discontinue the offending drug, although there have been reports describing how the eruption evolved little after it had established in spite of continuing the medication. Vitamin K1 can be used to reverse the effects of warfarin, and heparin or its low molecular weight heparin (LMWH) can be used in an attempt to prevent further clotting. None of these suggested therapies have been studied in clinical trials.
Heparin and LMWH act by a different mechanism than warfarin, so these drugs can also be used to prevent clotting during the first few days of warfarin therapy and thus prevent warfarin necrosis (this is called 'bridging').
Based on the assumption that low levels of protein C are involved in the underlying mechanism, common treatments in this setting include fresh frozen plasma or pure activated protein C.
Since the clot-promoting effects of starting administration of 4-hydroxycoumarins are transitory, patients with protein C deficiency or previous warfarin necrosis can still be restarted on these drugs if appropriate measures are taken. These include gradual increase starting from low doses and supplemental administration of protein C (pure or from fresh frozen plasma).
The necrotic skin areas are treated as in other conditions, sometimes healing spontaneously with or without scarring, sometimes going on to require surgical debridement or skin grafting.
Critics of the diagnosis complain that case evidence is spotty and lacking controlled clinical studies.
Heparin enhances ATIII activity and neutralizes "activated serine protease coagulation factors." Patients with ATIII deficiency requiring anticoagulant therapy with heparin will need higher doses of heparin. ATIII binds to thrombin and then forms the thrombin-anti thrombin complex or TAT complex. This is a major natural pathway of anticoagulation. This binding of thrombin to AT is greatly enhanced in the presence of heparin. Heparin does not affect vitamin K metabolism, so giving vitamin K1 (Phytonadione) will not reverse the effects of heparin.
Heparin is used as "bridging" therapy when initiating a patient on warfarin in a hospital setting. It can be used in DVT prophylaxis and treatment, acute coronary syndromes, and ST-segment elevated MI.
The long-term prognosis for APS is determined mainly by recurrent thrombosis, which may occur in up to 29% of patients, sometimes despite antithrombotic therapy.
Studies suggest that prenatal care for mothers during their pregnancies can prevent congenital amputation. Knowing environmental and genetic risks is also important. Heavy exposure to chemicals, smoking, alcohol, poor diet, or engaging in any other teratogenic activities while pregnant can increase the risk of having a child born with a congenital amputation. Folic acid is a multivitamin that has been found to reduce birth defects.
Surgery to remove the clot is possible, but rarely performed. In the past, surgical removal of the renal vein clot was the primary treatment but it is very invasive and many complications can occur. In the past decades, treatment has shifted its focus from surgical intervention to medical treatments that include intravenous and oral anticoagulants. The use of anticoagulants may improve renal function in RVT cases by removing the clot in the vein and preventing further clots from occurring. Patients already suffering from nephrotic syndrome may not need to take anticoagulants. In this case, patients should keep an eye out and maintain reduced level of proteinuria by reducing salt and excess protein, and intaking diuretics and statins. Depending on the severity of RVT, patients may be on anticoagulants from a year up to a lifetime. As long as the albumen levels in the bloodstream are below 2.5g/L, it is recommended that RVT patients continue taking anticoagulants. Main anticoagulants that can be used to treat RVT include warfarin and low molecular weight heparin. Heparin has become very popular, because of its low risk of complications, its availability and because it can easily be administered. Warfarin is known to interact with many other drugs, so careful monitoring is required. If a nephrotic syndrome patient experiences any of the RVT symptoms (flank or back pain, blood in the urine or decreased renal function), he or she should immediately see a doctor to avoid further complications.
The main side effect of anticoagulants is the risk of excessive bleeding. Other side effects include: blood in the urine or feces, severe bruising, prolonged nosebleeds (lasting longer than 10 minutes), bleeding gum, blood in your vomit or coughing up blood, unusual headaches, sudden severe back pain, difficulty breathing or chest pain, in women, heavy or increased bleeding during the period, or any other bleeding from the vagina. Warfarin can cause rashes, diarrhea, nausea (feeling sick) or vomiting, and hair loss. Heparin can cause hair loss (alopecia) thrombocytopenia – a sudden drop in the number of platelets in the blood.
It has been reported in a case study of 27 patients with nephrotic syndrome caused RVT, there was a 40% mortality rate, mostly due to hemorrhagic complications and sepsis. In 75% of the remaining surviving patients, the RVT was resolved and renal function returned to normal. It has been concluded that age is not a factor on the survival of RVT patients, although older patient (55 and older) are more likely to develop renal failure. Heparin is crucial in returning normal renal function; in patients that did not take heparin, long term renal damage was observed in 100%. In patients that did take heparin, renal damage was observed in about 33%. By quickly treating, and receiving the correct medications, patients should increase their chances of survival and reduce the risk of the renal vein clot from migrating to another part of the body.
Treatment is almost always aimed to control hemorrhages, treating underlying causes, and taking preventative steps before performing invasive surgeries.
Hypoprothrombinemia can be treated with periodic infusions of purified prothrombin complexes. These are typically used as treatment methods for severe bleeding cases in order to boost clotting ability and increasing levels of vitamin K-dependent coagulation factors.
1. A known treatment for hypoprothrombinemia is menadoxime.
2. Menatetrenone was also listed as a Antihaemorrhagic vitamin.
3. 4-Amino-2-methyl-1-naphthol (Vitamin K5) is another treatment for hypoprothrombinemia.
1. Vitamin K forms are administered orally or intravenously.
4. Other concentrates include Proplex T, Konyne 80, and Bebulin VH.
Fresh Frozen Plasma infusion (FFP) is a method used for continuous bleeding episodes, every 3-5 weeks for mention.
1. Used to treat various conditions related to low blood clotting factors.
2. Administered by intravenous injection and typically at a 15-20 ml/kg/dose.
3. Can be used to treat acute bleeding.
Sometimes, underlying causes cannot be controlled or determined, so management of symptoms and bleeding conditions should be priority in treatment.
Invasive options, such as surgery or clotting factor infusions, are required if previous methods do not suffice. Surgery is to be avoided, as it causes significant bleeding in patients with hypoprothrombinemia.
Prognosis for patients varies and is dependent on severity of the condition and how early the treatment is managed.
1. With proper treatment and care, most people go on to live a normal and healthy life.
2. With more severe cases, a hematologist will need to be seen throughout the patient's life in order to deal with bleeding and continued risks.
Many of the congenital malformations found with Malpuech syndrome can be corrected surgically. These include cleft lip and palate, omphalocele, urogenital and craniofacial abnormalities, skeletal deformities such as a caudal appendage or scoliosis, and hernias of the umbillicus. The primary area of concern for these procedures applied to a neonate with congenital disorders including Malpuech syndrome regards the logistics of anesthesia. Methods like tracheal intubation for management of the airway during general anesthesia can be hampered by the even smaller, or maldeveloped mouth of the infant. For regional anesthesia, methods like spinal blocking are more difficult where scoliosis is present. In a 2010 report by Kiernan et al., a four-year-old girl with Malpuech syndrome was being prepared for an unrelated tonsillectomy and adenoidectomy. While undergoing intubation, insertion of a laryngoscope, needed to identify the airway for the placement of the endotracheal tube, was made troublesome by the presence of micrognathia attributed to the syndrome. After replacement with a laryngoscope of adjusted size, intubation proceeded normally. Successful general anesthesia followed.
A rare follow-up of a male with Malpuech syndrome was presented by Priolo et al. (2007). Born at term from an uneventful pregnancy and delivery, the infant underwent a surgical repair of a cleft lip and palate. No problems were reported with the procedure. A heart abnormality, atrial septal defect, was also apparent but required no intervention. At age three years, mental retardation, hyperactivity and obsessive compulsive disorder were diagnosed; hearing impairment was diagnosed at age six, managed with the use of hearing aids. Over the course of the decade that followed, a number of psychiatric evaluations were performed. At age 14, he exhibited a fear of physical contact; at age 15, he experienced a severe psychotic episode, characterized by agitation and a loss of sociosexual inhibition. This array of symptoms were treated pharmocologically (with prescription medications). He maintained a low level of mental deficiency by age 17, with moments of compulsive echolalia.
Treatment for individuals with Dandy–Walker Syndrome generally consists of treating the associated problems, if needed.
A special tube (shunt) to reduce intracranial pressure may be placed inside the skull to control swelling. Endoscopic third ventriculostomy is also an option.
Treatment may also consist of various therapies such as occupational therapy, physiotherapy, speech therapy or specialized education. Services of a teacher of students with blindness/visual impairment may be helpful if the eyes are affected.
Early stage sepsis-associated purpura fulminans may be reversible with quick therapeutic intervention. Treatment is mainly removing the underlying cause and degree of clotting abnormalities and with supportive treatment (antibiotics, volume expansion, tissue oxygenation, etc.). Thus, treatment includes aggressive management of the septic state.
Purpura fulminans with disseminated intravascular coagulation should be urgently treated with fresh frozen plasma (10–20 mL/kg every 8–12 hours) and/or protein C concentrate to replace pro-coagulant and anticoagulant plasma proteins that have been depleted by the disseminated intravascular coagulation process.
Protein C in plasma in the steady state has a half life of 6- to 10-hour, therefore, patients with severe protein C deficiency and presenting with purpura fulminans can be treated acutely with an initial bolus of protein C concentrate 100 IU/kg followed by 50 IU /kg every 6 hours. A total of 1 IU/kg of protein C concentrate or 1 mL/kg of fresh frozen plasma will increase the plasma concentration of protein C by 1 IU/dL. Cases with comorbid pathological bleeding may require additional transfusions with platelet concentrate (10–15 mL/kg) or cryoprecipitate (5 mL/kg).
Established soft tissue necrosis may require surgical removal of the dead tissue, fasciotomy, amputation or reconstructive surgery.
Sneddon's patients are generally treated with warfarin, maintaining a high INR of 3-4. Because most will experience significant relief of symptoms after several months of consistent INR in this range, treatment with warfarin is often used as a diagnostic tool.
Fetal warfarin syndrome (dysmorphism due to warfarin, warfarin embryopathy) is a condition associated with administration of warfarin during pregnancy.
Associated conditions include hypoplasia of nasal bridge, laryngomalacia, pectus carinatum, congenital heart defects, ventriculomegaly, agenesis of the corpus callosum, stippled epiphyses, telebrachydactyly, and growth retardation.
It is also known as "DiSaia syndrome". The symptoms are nasal hypoplasia, depressed nasal bridge, deep groove between nostril and nasal tip, stippling of uncalcified epiphyses during first year, mild hypoplasia of nails, shortened fingers, low birth weight, significant intellectual disability, seizures, reduced muscle tone, widely spaced nipples, deafness and feeding difficulty.
Primary prophylaxis with low-molecular weight heparin, heparin, or warfarin is often considered in known familial cases. Anticoagulant prophylaxis is given to all who develop a venous clot regardless of underlying cause.
Studies have demonstrated an increased risk of recurrent venous thromboembolic events in patients with protein C deficiency. Therefore, long-term anticoagulation therapy with warfarin may be considered in these patients.
Homozygous protein C defect constitutes a potentially life-threatening disease, and warrants the use of supplemental protein C concentrates.
Liver transplant may be considered curative for homozygous protein C deficiency.
For people who have severe congenital protein C deficiency, protein C replacement therapies are available, which is indicated and approved for use in the United States and Europe for the prevention of purpura fulminans. Protein C replacement is often in combination with anticoagulation therapy of injectable low molecular weight heparin or oral warfarin. Before initiating warfarin therapy, a few days of therapeutic heparin may be administered to prevent warfarin skin necrosis and other progressive or recurrent thrombotic complications.
Given the fact that HIT predisposes strongly to new episodes of thrombosis, it is not sufficient to simply discontinue the heparin administration. Generally, an alternative anticoagulant is needed to suppress the thrombotic tendency while the generation of antibodies stops and the platelet count recovers. To make matters more complicated, the other most commonly used anticoagulant, warfarin, should not be used in HIT until the platelet count is at least 150 x 10^9/L because there is a very high risk of warfarin necrosis in people with HIT who have low platelet counts. Warfarin necrosis is the development of skin gangrene in those receiving warfarin or a similar vitamin K inhibitor. If the patient was receiving warfarin at the time when HIT is diagnosed, the activity of warfarin is reversed with vitamin K. Transfusing platelets is discouraged, as there is a theoretical risk that this may worsen the risk of thrombosis; the platelet count is rarely low enough to be the principal cause of significant hemorrhage.
Various non-heparin agents are used to provide anticoagulation in those with strongly suspected or proven HIT: danaparoid, fondaparinux, bivalirudin and argatroban. These are alternatives to heparin therapy. Not all agents are available in all countries, and not all are approved for this specific use. For instance, argatroban is only recently licensed in the United Kingdom, and danaparoid is not available in the United States. Fondaparinux, a Factor Xa inhibitor, is commonly used off label for HIT treatment in the United States.
According to a systematic review, people with HIT treated with lepirudin showed a relative risk reduction of clinical outcome (death, amputation, etc.) to be 0.52 and 0.42 when compared to patient controls. In addition, people treated with argatroban for HIT showed a relative risk reduction of the above clinical outcomes to be 0.20 and 0.18. Lepirudin production stopped on May 31, 2012.
Anticoagulation, which prevents further coagulation, but does not act directly on existing clots, is the standard treatment for DVT. Balancing risk vs. benefit is important in determining the duration of anticoagulation, and three months is generally the standard length of treatment. In those with an annual risk of VTE in excess of 9%, as after an unprovoked episode, extended anticoagulation is a possibility. Those who finish VKA treatment after idiopathic VTE with an elevated D-dimer level show an increased risk of recurrent VTE (about 9% vs about 4% for normal results), and this result might be used in clinical decision-making. Thrombophilia test results rarely play a role in the length of treatment.
For acute cases in the leg, the ACCP recommended a parenteral anticoagulant (such as LMWH, fondaparinux, or unfractionated heparin) for at least five days and a VKA, the oral anticoagulant, the same day. LMWH and fondaparinux are suggested over unfractionated heparin, but both are retained in those with compromised kidney function, unlike unfractionated heparin. The VKA is generally taken for a minimum of three months to maintain an international normalized ratio of 2.0–3.0, with 2.5 as the target. The benefit of taking a VKA declines as the duration of treatment extends, and the risk of bleeding increases with age.
The ACCP recommended treatment for three months in those with proximal DVT provoked by surgery. A three-month course is also recommended for those with proximal DVT provoked by a transient risk factor, and three months is suggested over lengthened treatment when bleeding risk is low to moderate. Unprovoked DVT patients should have at least three months of anticoagulation and be considered for extended treatment. Those whose first VTE is an unprovoked proximal DVT are suggested for anticoagulation longer than three months unless there is a high risk of bleeding. In that case, three months is sufficient. Those with a second unprovoked VTE are recommended for extended treatment when bleeding risk is low, suggested for extended treatment when bleeding risk is moderate, and suggested for three months of anticoagulation in high-risk scenarios.
Arterial thrombosis is platelet-rich, and inhibition of platelet aggregation with antiplatelet drugs such as aspirin may reduce the risk of recurrence or progression.
Warfarin and vitamin K antagonists are anticoagulants that can be taken orally to reduce thromboembolic occurrence. Where a more effective response is required, heparin can be given (by injection) concomitantly. As a side effect of any anticoagulant, the risk of bleeding is increased, so the international normalized ratio of blood is monitored. Self-monitoring and self-management are safe options for competent patients, though their practice varies. In Germany, about 20% of patients were self-managed while only 1% of U.S. patients did home self-testing (according to one 2012 study). Other medications such as direct thrombin inhibitors and direct Xa inhibitors are increasingly being used instead of warfarin.