Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no single course of medical treatment or cure for Möbius syndrome. Treatment is supportive and in accordance with symptoms. If they have difficulty nursing, infants may require feeding tubes or special bottles to maintain sufficient nutrition. Physical, occupational, and speech therapy can improve motor skills and coordination and can lead to better control of speaking and eating abilities. Often, frequent lubrication with eye drops is sufficient to combat dry eye that results from impaired blinking. Surgery can correct crossed eyes, protect the cornea via tarsorraphy, and improve limb and jaw deformities. Sometimes called smile surgery by the media, muscle transfers grafted from the thigh to the corners of the mouth can be performed to provide the ability to smile. Although "smile surgery" may provide the ability to smile, the procedure is complex and can take twelve hours for each side of the face. Also, the surgery cannot be considered a "cure" for Möbius syndrome, because it does not improve the ability to form other facial expressions.
A number of features found with Nasodigitoacoustic syndrome can be managed or treated. Sensorineural hearing loss in humans may be caused by a loss of hair cells (sensory receptors in the inner ear that are associated with hearing). This can be hereditary and/or within a syndrome, as is the case with nasodigitoacoustic syndrome, or attributed to infections such as viruses. For the management of sensorineural hearing loss, hearing aids have been used. Treatments, depending upon the cause and severity, may include a pharmacological approach (i.e., the use of certain steroids), or surgical intervention, like a cochlear implant.
Pulmonary, or pulmonic stenosis is an often congenital narrowing of the pulmonary valve; it can be present in nasodigitoacoustic-affected infants. Treatment of this cardiac abnormality can require surgery, or non-surgical procedures like balloon valvuloplasty (widening the valve with a balloon catheter).
Many of the congenital malformations found with Malpuech syndrome can be corrected surgically. These include cleft lip and palate, omphalocele, urogenital and craniofacial abnormalities, skeletal deformities such as a caudal appendage or scoliosis, and hernias of the umbillicus. The primary area of concern for these procedures applied to a neonate with congenital disorders including Malpuech syndrome regards the logistics of anesthesia. Methods like tracheal intubation for management of the airway during general anesthesia can be hampered by the even smaller, or maldeveloped mouth of the infant. For regional anesthesia, methods like spinal blocking are more difficult where scoliosis is present. In a 2010 report by Kiernan et al., a four-year-old girl with Malpuech syndrome was being prepared for an unrelated tonsillectomy and adenoidectomy. While undergoing intubation, insertion of a laryngoscope, needed to identify the airway for the placement of the endotracheal tube, was made troublesome by the presence of micrognathia attributed to the syndrome. After replacement with a laryngoscope of adjusted size, intubation proceeded normally. Successful general anesthesia followed.
A rare follow-up of a male with Malpuech syndrome was presented by Priolo et al. (2007). Born at term from an uneventful pregnancy and delivery, the infant underwent a surgical repair of a cleft lip and palate. No problems were reported with the procedure. A heart abnormality, atrial septal defect, was also apparent but required no intervention. At age three years, mental retardation, hyperactivity and obsessive compulsive disorder were diagnosed; hearing impairment was diagnosed at age six, managed with the use of hearing aids. Over the course of the decade that followed, a number of psychiatric evaluations were performed. At age 14, he exhibited a fear of physical contact; at age 15, he experienced a severe psychotic episode, characterized by agitation and a loss of sociosexual inhibition. This array of symptoms were treated pharmocologically (with prescription medications). He maintained a low level of mental deficiency by age 17, with moments of compulsive echolalia.
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
Treatment can include amoxicillin-clavulanic acid, intravenous fluid administration and paracetamol oral for pain relief. Other treatment varies based on the condition and extent of uropathy.
There is no known specific treatment for this condition. Management is supportive.
Although there is no cure for 13q deletion syndrome, symptoms can be managed, usually with the involvement of a neurologist, rehabilitation physician, occupational therapist, physiotherapist, psychotherapist, nutritionist, special education professional, and/or speech therapist. If the affected child's growth is particularly slow, growth hormone treatment can be used to augment growth. Plastic surgeries can repair cleft palates, and surgical repair or monitoring by a pediatric cardiologist can manage cardiac defects. Some skeletal, neurological, genitourinary, gastrointestinal, and ophthalmic abnormalities can be definitively treated with surgery. Endocrine abnormalities can often be managed medically. Special educators, speech and occupational therapists, and physiotherapists can help a child develop skills in and out of school.
Usually the hemangioma requires medical therapy. The child may need other therapies, depending on what other organs or structures are involved.
Because newborns can breathe only through their nose, the main goal of postnatal treatment is to establish a proper airway. Primary surgical treatment of FND can already be performed at the age of 6 months, but most surgeons wait for the children to reach the age of 6 to 8 years. This decision is made because then the neurocranium and orbits have developed to 90% of their eventual form. Furthermore, the dental placement in the jaw has been finalized around this age.
There is no cure as of now. Treatment is directed towards the specific symptoms that are present in each individual. Individuals with hearing loss are able to get treated with hearing aids.
The treatment will vary with the different grades, but the most common is a surgical repair. The surgical option is cosmetic reconstruction of the external ear's normal shape and repair of the ear canal. In less severe cases the reconstruction will be sufficient to restore hearing. In grades of anotia/microtia that affect the middle ear the surgery with the use of a Bone Anchored Hearing Aid (BAHA) will likely restore the hearing. The BAHA may be surgically implanted onto the skull which would allow for some hearing repair by conduction through the skull bone. "This allows sound vibrations to travel through bones in the head to the inner ear."
BAHA: An implantable hearing device. It is the only hearing aid device that works via direct bone conduction.
While Larsen syndrome can be lethal if untreated, the prognosis is relatively good if individuals are treated with orthopedic surgery, physical therapy, and other procedures used to treat the symptoms linked with Larsen syndrome.
Treatment for Larsen syndrome varies according to the symptoms of the individual. Orthopedic surgery can be performed to correct the serious joint defects associated with Larsen syndrome. Reconstructive surgery can be used to treat the facial abnormalities. Cervical kyphosis can be very dangerous to an individual because it can cause the vertebrae to disturb the spinal cord. Posterior cervical arthrodesis has been performed on patients with cervical kyphosis, and the results have been successful Propranolol has been used to treat some of the cardiac defects associated with Marfan's syndrome, so the drug also has been suggested to treat cardiac defects associated with Larsen syndrome.
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
Early intervention is considered important. For infants, breathing and feeding difficulties, are monitored. Therapies used are "symptomatic and supportive."
Structural nasal deformities are corrected during or shortly after the facial bipartition surgery. In this procedure, bone grafts are used to reconstruct the nasal bridge. However, a second procedure is often needed after the development of the nose has been finalized (at the age of 14 years or even later).
Secondary rhinoplasty is based mainly on a nasal augmentation, since it has been proven better to add tissue to the nose than to remove tissue. This is caused by the minimal capacity of contraction of the nasal skin after surgery.
In rhinoplasty, the use of autografts (tissue from the same person as the surgery is performed on) is preferred. However, this is often made impossible by the relative damage done by previous surgery. In those cases, bone tissue from the skull or the ribs is used. However, this may give rise to serious complications such as fractures, resorption of the bone, or a flattened nasofacial angle.
To prevent these complications, an implant made out of alloplastic material could be considered. Implants take less surgery time, are limitlessly available and may have more favorable characteristics than autografts. However, possible risks are rejection, infection, migration of the implant, or unpredictable changes in the physical appearance in the long term.
At the age of skeletal maturity, orthognathic surgery may be needed because of the often hypoplastic maxilla. Skeletal maturity is usually reached around the age of 13 to 16. Orthognathic surgery engages in diagnosing and treating disorders of the face and teeth- and jaw position.
Practical surgical procedures used for treating synkinesis are neurolysis and selective myectomy. Neurolysis has been shown to be effective in relieving synkinesis but only temporarily and unfortunately symptoms return much worse than originally. Selective myectomy, in which a synkinetic muscle is selectively resected, is a much more effective technique that can provide permanent relief and results in a low recurrence rate; unfortunately, it also has many post-operative complications that can accompany including edema, hematoma, and ecchymosis. Therefore, surgical procedures are very minimally used by doctors and are used only as last-resort options for patients who do not respond well to non-invasive treatments.
The treatments of kabuki syndrome are still being developed due to its genetic nature. The first step to treatment is diagnosis. After diagnosis, the treatment of medical conditions can often be treated by medical intervention. There are also options in psychotherapy for young children with this disorder, as well as the family of the child. Genetic counseling is available as a preventative treatment for kabuki syndrome because it can be inherited and expressed by only having one copy of the mutated gene.
Botox (botulinum toxin) is a new and versatile tool for the treatment of synkinesis. Initially used for reducing hyperkinesis after facial palsy, Botox was later attempted on patients with post-facial palsy synkinesis to reduce unwanted movements. The effects of Botox have shown to be remarkable, with synkinetic symptoms disappearing within 2 or 3 days. The most common treatment targets are the orbicularis oculi, depressor anguli oris (DAO), mentalis, platysma and the contralateral depressor labii inferioris muscles. Due to the short span of Botox effects though, patients must come back to the doctor for re-injection approximately every 3 months. More notable is that in a majority of patients, various synkinetic movements completely disappeared after 2-3 sessions of trimonthly Botox injections.
A more specific synkinesis, crocodile tears syndrome (hyperlacrimation upon eating), has been shown to respond exceedingly well to Botox injection. Botox is injected directly into the lacrimal gland and has shown to reduce hyperlacrimation within 24–48 hours. The procedure was shown to be simple and safe with very little chance of side-effects (although on rare occasions ptosis can occur due to botulinum toxin diffusion). Furthermore, reduction in hyper-lacrimation was shown to last longer than the expected 3 months (about 12 months).
Since Botox can mimic facial paralysis, an optimized dose has been determined that reduces involuntary synkinesis of the muscle while not affecting muscle tone.
This can be done by annual evaluations by multidiciplinary team involving otolaryngologist, clinical geneticist, a pediatrician, the expertise of an educator of the deaf, a neurologist is appropriate.
After the last primary tooth is lost, usually around the age of twelve, final orthodontic treatment can be initiated. A patient that has not been able to close or swallow well probably will have an open bite, deficient lower-jaw growth, a narrow archform with crowded teeth, and upper anterior flaring of teeth. Orthognathic (jaw) surgery may be indicated. This should be completed in most situations before the smile surgery where the gracilis muscle is grafted to the face.
Genetic links to 13q12.2 and 1p22 have been suggested.
Courses of treatment typically include the following:
- Draining the pus once awhile as it can build up a strong odor
- Antibiotics when infection occurs.
- Surgical excision is indicated with recurrent fistular infections, preferably after significant healing of the infection. In case of a persistent infection, infection drainage is performed during the excision operation. The operation is generally performed by an appropriately trained specialist surgeon e.g. an otolaryngologist or a specialist General Surgeon.
- The fistula can be excised as a cosmetic operation even though no infection appeared. The procedure is considered an elective operation in the absence of any associated complications.
PHACE syndrome needs to be managed by a multidisciplinary team of experts. Additional specialties such as cardiology, ophthalmology, neurology, and neurosurgery may need to be involved. The team of experts pay close attention to how these children develop throughout the school age period.
PHACE Syndrome Handbook - Dr. Beth Drolet
In 2013, the PHACE Syndrome Community was formed. The non-profit entity was developed to raise awareness about the condition, support patients and families of those with the condition and raise money for research into causes and treatment.
CBPS is commonly treated with anticonvulsant therapy to reduce seizures. Therapies include anticonvulsant drugs, adrenocorticotropic hormone therapy, and surgical therapy, including focal corticectomy and callosotomy. Special education, speech therapy, and physical therapy are also used to help children with intellectual disability due to CBPS.
The treatment for Bonnet–Dechaume–Blanc syndrome is controversial due to a lack of consensus on the different therapeutic procedures for treating arteriovenous malformations. The first successful treatment was performed by Morgan et al. They combined intracranial resection, ligation of ophthalmic artery, and selective arterial ligature of the external carotid artery, but the patient did not have retinal vascular malformations.
If lesions are present, they are watched closely for changes in size. Prognosis is best when lesions are less than 3 cm in length. Most complications occur when the lesions are greater than 6 cm in size. Surgical intervention for intracranial lesions has been done successfully. Nonsurgical treatments include embolization, radiation therapy, and continued observation. Arterial vascular malformations may be treated with the cyberknife treatment. Possible treatment for cerebral arterial vascular malformations include stereotactic radiosurgery, endovascular embolization, and microsurgical resection.
When pursuing treatment, it is important to consider the size of the malformations, their locations, and the neurological involvement. Because it is a congenital disorder, there are not preventative steps to take aside from regular follow ups with a doctor to keep an eye on the symptoms so that future complications are avoided.