Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is supportive and consists of management of manifestations. User of hearing aids and/or cochlear implant, suitable educational programs can be offered. Periodic surveillance is also important.
Depending upon the treatment required, it is sometimes most appropriate to wait until later in life for a surgical remedy – the childhood growth of the face may highlight or increase the symptoms. When surgery is required, particularly when there is a severe disfiguration of the jaw, it is common to use a rib graft to help correct the shape.
According to literature, HFM patients can be treated with various treatment options such functional therapy with an appliance, distraction osteogenesis, or costochondral graft. The treatment is based on the type of severity for these patients. According to Pruzanksky's classification, if the patient has moderate to severe symptoms, then surgery is preferred. If patient has mild symptoms, then a functional appliance is generally used.
Patients can also benefit from a Bone Anchored Hearing Aid (BAHA).
No specific treatment exists for Pendred syndrome. Speech and language support and hearing aids are important. Cochlear implants may be needed if the hearing loss drops to severe to profound levels and can improve language skills. If thyroid hormone levels are decreased, thyroid hormone supplements may be required. Patients are advised to take precautions against head injury.
There is currently no specified treatment for individuals suffering from otodental syndrome. Considering that there are many possible genetic and phenotypic associations with the condition, treatment is provided based on each individual circumstance. It is recommended that those affected seek ear, nose & throat specialists, dental health specialists, and facial oral health specialists immediately; in order to determine potential treatment options.
Common treatment methods given are:
- Dental treatment/management – which can be complex, interdisciplinary and requires a regular follow up. Tooth extraction(s)and if needed, medications may be administered for pain, anxiety, and anti-inflammation. The affected individual is usually placed on a strict and preventative dental regiment in order to maintain appropriate oral hygiene and health.
- Endodontic treatment – individuals consult with an endodontist to analyze the individuals dental pulp. Typically endodontic treatment proves to be difficult due to duplicated pulp canals within the affected teeth. There may be a need for multiple extractions as well. Dental prosthesis and/or dental implants may be necessary for individuals that lack proper oral function, appearance, and comfort.
- Orthodontic treatment – given the predicament of the size and location of the affected oral area, molars and canines, orthodontic treatment is generally required in order treat any problems associated with the individuals bite pattern and tooth appearance.
- Hearing aids – in some cases affected individuals will suffer from hearing imparities and it may be necessary for hearing aid use.
The functional prognosis is mostly good with those that suffer from otodental syndrome. Appropriate dental treatment, hearing aids, and visitation to necessary specialists are recommended. Quality of life may be affected by psychological and functional aspects. It is also recommended that genetic counseling be given to families that have or may have this condition.
A number of features found with Nasodigitoacoustic syndrome can be managed or treated. Sensorineural hearing loss in humans may be caused by a loss of hair cells (sensory receptors in the inner ear that are associated with hearing). This can be hereditary and/or within a syndrome, as is the case with nasodigitoacoustic syndrome, or attributed to infections such as viruses. For the management of sensorineural hearing loss, hearing aids have been used. Treatments, depending upon the cause and severity, may include a pharmacological approach (i.e., the use of certain steroids), or surgical intervention, like a cochlear implant.
Pulmonary, or pulmonic stenosis is an often congenital narrowing of the pulmonary valve; it can be present in nasodigitoacoustic-affected infants. Treatment of this cardiac abnormality can require surgery, or non-surgical procedures like balloon valvuloplasty (widening the valve with a balloon catheter).
The only treatment for this disorder is surgery to reduce the compression of cranial nerves and spinal cord. However, bone regrowth is common since the surgical procedure can be technically difficult. Genetic counseling is offered to the families of the people with this disorder.
While there is no cure for JBS, treatment and management of specific symptoms and features of the disorder are applied and can often be successful. Variability in the severity of JBS on a case-by-case basis determines the requirements and effectiveness of any treatment selected.
Pancreatic insufficiency and malabsorption can be managed with pancreatic enzyme replacement therapy, such as pancrelipase supplementation and other related methods.
Craniofacial and skeletal deformities may require surgical correction, using techniques including bone grafts and osteotomy procedures. Sensorineural hearing loss can be managed with the use of hearing aids and educational services designated for the hearing impaired.
Special education, specialized counseling methods and occupational therapy designed for those with mental retardation have proven to be effective, for both the patient and their families. This, too, is carefully considered for JBS patients.
The treatment will vary with the different grades, but the most common is a surgical repair. The surgical option is cosmetic reconstruction of the external ear's normal shape and repair of the ear canal. In less severe cases the reconstruction will be sufficient to restore hearing. In grades of anotia/microtia that affect the middle ear the surgery with the use of a Bone Anchored Hearing Aid (BAHA) will likely restore the hearing. The BAHA may be surgically implanted onto the skull which would allow for some hearing repair by conduction through the skull bone. "This allows sound vibrations to travel through bones in the head to the inner ear."
BAHA: An implantable hearing device. It is the only hearing aid device that works via direct bone conduction.
Like treatment options, the prognosis is dependent on the severity of the symptoms. Despite the various symptoms and limitations, most individuals have normal intelligence and can lead a normal life.
Early intervention is considered important. For infants, breathing and feeding difficulties, are monitored. Therapies used are "symptomatic and supportive."
Because kniest dysplasia can affect various body systems, treatments can vary between non-surgical and surgical treatment. Patients will be monitored over time, and treatments will be provided based on the complications that arise.
There is no treatment to correct an enlarged vestibular aqueduct. Any hearing loss will need management with amplification and support in education and at work. If the hearing loss becomes severe to profound cochlear implants can be of significant value. Vestibular disturbance is usually short-lived and associated with head trauma but significant vestibular hypofunction may require rehabilitation.
People with enlarged vestibular aqueducts are advised to avoid head trauma where possible. This usually means avoiding contact sports such as boxing and rugby, but also horse riding, trampolining and other sports where head injury may occur. Some have symptoms when flying and should limit these activities if affected.
Because newborns can breathe only through their nose, the main goal of postnatal treatment is to establish a proper airway. Primary surgical treatment of FND can already be performed at the age of 6 months, but most surgeons wait for the children to reach the age of 6 to 8 years. This decision is made because then the neurocranium and orbits have developed to 90% of their eventual form. Furthermore, the dental placement in the jaw has been finalized around this age.
Currently there are no open research studies for otodental syndrome. Due to the rarity of this disease, current research is very limited.
The most recent research has involved case studies of the affected individuals and/or families, all of which show the specific phenotypic symptoms of otodental syndrome. Investigations on the effects of FGF3 and FADD have also been performed. These studies have shown successes in supporting previous studies that mutations to FGF3 and neighboring genes may cause the associated phenotypic abnormalities. According to recent studies involving zebrafish embryos, there is also support in that the FADD gene contributed to ocular coloboma symptoms as well.
Future research studies are required in order to better grasp the specific relationship between the gene involved and its effect on various tissues and organs such as teeth, eyes, and ear. Little is known and there is still much to be determined.
A child with a congenital hearing loss should begin receiving treatment before 6 months of age. Studies suggest that children treated this early are usually able to develop communication skills (using spoken or sign language) that are as good as those of hearing peers.
In the United States of America, because of a Federal law (the Individuals with Disabilities Education Act), children with a hearing loss between birth and 3 years of age have the right to receive interdisciplinary assessment and early intervention services at little or no cost. After age 3, early intervention and special education programs are provided through the public school system.
There are a number of treatment options available, and parents will need to decide which are most appropriate for their child. They will need to consider the child’s age, developmental level and personality, the severity of the hearing loss, as well as their own preferences. Ideally a team of experts including the child’s primary care provider, an otolaryngologist, a speech-language pathologist, audiologist and an educator will work closely with the parents to create an Individualized Family Service Plan. Treatment plans can be changed as the child gets older.
Children as young as 4 weeks of age can benefit from a hearing aid. These devices amplify sound, making it possible for many children to hear spoken words and develop language. However, some children with severe to profound hearing loss may not be able to hear enough sound, even with a hearing aid, to make speech audible. A behind-the-ear hearing aid is often recommended for young children because it is safer and more easily fitted and adjusted as the child grows as compared to one that fits within the ear.
Parents also will need to decide how their family and child are going to communicate. If the child is going to communicate orally (speech), s/he may need assistance learning listening skills and lip reading skills to help her/him understand what others are saying. Many children with hearing loss also need speech or language therapy.
A child also can learn to communicate using a form of sign language. In the United States of America, the type preferred by most deaf adults is American Sign Language (ASL), which has rules and grammar that is distinct from English. There are also several variations of sign language that can be used along with spoken English which are standard in English-speaking countries outside the United States.
There is also a visual model of spoken language called cued speech. Learning to lip read is very difficult because many sounds look the same on the lips. Cued speech enables young children with hearing loss to clearly see what is being said, and learn spoken languages with normal grammar and vocabulary. It clarifies lip reading using 8 hand shapes in 4 positions and usually takes less than 20 hours to learn the entire system.
Surgery may be recommended if a child has a permanent conductive hearing loss caused by malformations of the outer or middle ear, or by repeated ear infections. Although fluid in the middle ear usually results in only temporary hearing loss, chronic ear infection can cause a child to fall behind in language skills. In some cases, a doctor may suggest inserting a tube through the eardrum to allow the middle ear to drain. This procedure generally does not require an overnight hospital stay.
Surgery also may be an option for some children with severe to profound sensorineural hearing loss. A device called a cochlear implant can be surgically inserted in the inner ear of children as young as 12 months of age to stimulate hearing. The surgery requires a hospital stay of one to several days. With additional language and speech therapy, children with cochlear implants may learn to understand speech and speak reasonably well, but the amount of improvement is variable.
Once a child is diagnosed, the immediate and anticipated reaction of the parents and immediate family is one of the denial. Doctors or the audiologists need to counsel the family, help them cope with the situation and encourage them to look forward to solutions to overcome the problem. Often when the family is told about the excellent options available for a hearing impaired child, the chances of acceptance are much better. Once the family accepts the handicap, half the battle is over and rehabilitation can begin.
The type of intervention required depends on several factors. Chief among these is the degree of impairment. When a child has a fair degree of residual hearing, the correct intervention would be fitting "optimised" hearing aids. "Optimisation" means fitting the child with a hearing aid appropriate to its degree of deafness.
Today a variety of good quality hearing aids are available – analog or digital body worn (for small children) or ear level for older children. When fitting a hearing aid, a competent audiologist has to assess the child's residual hearing, look at the hearing aid's performance and fit the child with an appropriate instrument. Equally important is the ear mould, which has to be custom made to suit the shape of the child's ear.
If a child has profound or total deafness, the benefits of hearing aids are limited. Depending upon the level and type of hearing loss, cochlear implants may be used instead of hearing aids.
The timing of surgical interventions is debatable. Parents have to decide about their child in a very vulnerable time of their parenthood. Indications for early treatment are progressive deformities, such as syndactyly between index and thumb or transverse bones between the digital rays. Other surgical interventions are less urgent and can wait for 1 or 2 years.
Structural nasal deformities are corrected during or shortly after the facial bipartition surgery. In this procedure, bone grafts are used to reconstruct the nasal bridge. However, a second procedure is often needed after the development of the nose has been finalized (at the age of 14 years or even later).
Secondary rhinoplasty is based mainly on a nasal augmentation, since it has been proven better to add tissue to the nose than to remove tissue. This is caused by the minimal capacity of contraction of the nasal skin after surgery.
In rhinoplasty, the use of autografts (tissue from the same person as the surgery is performed on) is preferred. However, this is often made impossible by the relative damage done by previous surgery. In those cases, bone tissue from the skull or the ribs is used. However, this may give rise to serious complications such as fractures, resorption of the bone, or a flattened nasofacial angle.
To prevent these complications, an implant made out of alloplastic material could be considered. Implants take less surgery time, are limitlessly available and may have more favorable characteristics than autografts. However, possible risks are rejection, infection, migration of the implant, or unpredictable changes in the physical appearance in the long term.
At the age of skeletal maturity, orthognathic surgery may be needed because of the often hypoplastic maxilla. Skeletal maturity is usually reached around the age of 13 to 16. Orthognathic surgery engages in diagnosing and treating disorders of the face and teeth- and jaw position.
Surgical treatment of the cleft hand is based on several indications:
Improving function
- Absent thumb
- Deforming syndactyly (mostly between digits of unequal length like index and thumb)
- Transverse bones (this will progress the deformity; growth of these bones will widen the cleft)
- Narrowed first webspace
- The feet
Aesthetical aspects
- Reducing deformity
Management falls into three modalities: surgical treatment, pharmaceutical treatment, and supportive, depending on the nature and location of the specific cause.
In cases of infection, antibiotics or antifungal medications are an option. Some conditions are amenable to surgical intervention such as middle ear fluid, cholesteatoma, otosclerosis. If conductive hearing loss is due to head trauma, surgical repair is an option. If absence or deformation of ear structures cannot be corrected, or if the patient declines surgery, hearing aids which amplify sounds are a possible treatment option. Bone conduction hearing aids are useful as these deliver sound directly, through bone, to the cochlea or organ of hearing bypassing the pathology. These can be on a soft or hard headband or can be inserted surgically, a bone anchored hearing aid, of which there are several types. Conventional air conduction hearing aids can also be used.
Prosthetic replacement of missing teeth is possible using dental implant technology or dentures. This treatment can be successful in giving patients with anodontia a more aesthetically pleasing appearance. The use of an implant prosthesis in the lower jaw could be recommended for younger patients as it is shown to significantly improve the craniofacial growth, social development and self-image. The study associated with this evidence worked with individuals who had ectodermal dysplasia of varying age groups of up to 11, 11 to 18 and more than 18 years. It was noted that the risk of implant failure was significantly higher in patients younger than 18 years, but there is significant reason to use this methodology of treatment in those older. Overall the use of an implant-prosthesis has a considerable functional, aesthetic and psychological advantage when compared to a conventional denture, in the patients.
The age when outer ear surgery can be attempted depends upon the technique chosen. The earliest is 7 for Rib Cartilage Grafts. However, some surgeons recommend waiting until a later age, such as 8–10 when the ear is closer to adult size. External ear prostheses have been made for children as young as 5.
For auricular reconstruction, there are several different options:
1. "Rib Cartilage Graft Reconstruction:" This surgery may be performed by specialists in the technique. It involves sculpting the patient's own rib cartilage into the form of an ear. Because the cartilage is the patient's own living tissue, the reconstructed ear continues to grow as the child does. In order to be sure that the rib cage is large enough to provide the necessary donor tissue, some surgeons wait until the patient is 8 years of age; however, some surgeons with more experience with this technique may begin the surgery on a child aged six. The major advantage of this surgery is that the patient's own tissue is used for the reconstruction. This surgery varies from two to four stages depending on the surgeon's preferred method. A novel one stage ear reconstruction technique is performed by a few select surgeons. One team is able to reconstruct the entire external ear and ear canal in one operation.
2. "Reconstruct the ear using a polyethylene plastic implant (also called Medpor):" This is a 1–2 stage surgery that can start at age 3 and can be done as an outpatient without hospitalization. Using the porous framework, which allows the patient's tissue to grow into the material and the patient's own tissue flap, a new ear is constructed in a single surgery. A small second surgery is performed in 3–6 months if needed for minor adjustments. This surgery should only be performed by experts in the techniques involved. The use of porous polyethylene implants for ear reconstruction was initiated in the 1980s by Alexander Berghaus.
3. "Ear Prosthesis:" An auricular (ear) prosthesis is custom made by an anaplastologist to mirror the other ear. Prosthetic ears can appear very realistic. They require a few minutes of daily care. They are typically made of silicone, which is colored to match the surrounding skin and can be attached using either adhesive or with titanium screws inserted into the skull to which the prosthetic is attached with a magnetic or bar/clip type system. These screws are the same as the BAHA (bone anchored hearing aid) screws and can be placed simultaneously. The biggest advantage over any surgery is having a prosthetic ear that allows the affected ear to appear as normal as possible to the natural ear. The biggest disadvantage is the daily care involved and knowing that the prosthesis is not real.
Available treatments address the symptoms of CCD, not the underlying defect. Early diagnosis and aggressive salt replacement therapy result in normal growth and development, and generally good outcomes. Replacement of NaCl and KCl has been shown to be effective in children.
A potential treatment is butyrate.
Typically, testing is first done to determine the quality of hearing. This can be done as early as in the first two weeks with a BAER test (Brain Stem Auditory Response Test). At age 5–6, CT or CAT scans of the middle ear can be done to elucidate its development and clarify which patients are appropriate candidates for surgery to improve hearing. For younger individuals, this is done under sedation.
The hearing loss associated with congenital aural atresia is a conductive hearing loss—hearing loss caused by inefficient conduction of sound to the inner ear. Essentially, children with aural atresia have hearing loss because the sound cannot travel into the (usually) healthy inner ear—there is no ear canal, no eardrum, and the small ear bones (malleus/hammer, incus/anvil, and stapes/stirrup) are underdeveloped. "Usually" is in parentheses because rarely, a child with atresia also has a malformation of the inner ear leading to a sensorineural hearing loss (as many as 19% in one study). Sensorineural hearing loss is caused by a problem in the inner ear, the cochlea. Sensorineural hearing loss is not correctable by surgery, but properly fitted and adjusted hearing amplification (hearing aids) generally provide excellent rehabilitation for this hearing loss. If the hearing loss is severe to profound in both ears, the child may be a candidate for a cochlear implant (beyond the scope of this discussion).
Unilateral sensorineural hearing loss was not generally considered a serious disability by the medical establishment before the nineties; it was thought that the afflicted person was able to adjust to it from birth. In general, there are exceptional advantages to gain from an intervention to enable hearing in the microtic ear, especially in bilateral microtia. Children with untreated unilateral sensorineural hearing loss are more likely to have to repeat a grade in school and/or need supplemental services (e.g., FM system – see below) than their peers.
Children with unilateral sensorineural hearing loss often require years of speech therapy in order to learn how to enunciate and understand spoken language. What is truly unclear, and the subject of an ongoing research study, is the effect of unilateral conductive hearing loss (in children with unilateral aural atresia) on scholastic performance. If atresia surgery or some form of amplification is not used, special steps should be taken to ensure that the child is accessing and understanding all of the verbal information presented in school settings. Recommendations for improving a child's hearing in the academic setting include preferential seating in class, an FM system (the teacher wears a microphone, and the sound is transmitted to a speaker at the child's desk or to an ear bud or hearing aid the child wears), a bone-anchored hearing aid (BAHA), or conventional hearing aids. Age for BAHA implantation depends on whether the child is in Europe (18 months) or the US (age 5). Until then it is possible to fit a BAHA on a softband
It is important to note that not all children with aural atresia are candidates for atresia repair. Candidacy for atresia surgery is based on the hearing test (audiogram) and CT scan imaging. If a canal is built where one does not exist, minor complications can arise from the body's natural tendency to heal an open wound closed. Repairing aural atresia is a very detailed and complicated surgical procedure which requires an expert in atresia repair. While complications from this surgery can arise, the risk of complications is greatly reduced when using a highly experienced otologist. Atresia patients who opt for surgery will temporarily have the canal packed with gelatin sponge and silicone sheeting to prevent closure. The timing of ear canal reconstruction (canalplasty) depends on the type of external ear (Microtia) repair desired by the patient and family. Two surgical teams in the USA are currently able to reconstruct the canal at the same time as the external ear in a single surgical stage (one stage ear reconstruction).
In cases where a later surgical reconstruction of the external ear of the child might be possible, positioning of the BAHA implant is critical. It may be necessary to position the implant further back than usual to enable successful reconstructive surgery – but not so far as to compromise hearing performance. If the reconstruction is ultimately successful, it is easy to remove the percutaneous BAHA abutment. If the surgery is unsuccessful, the abutment can be replaced and the implant re-activated to restore hearing.
There is no treatment for the disorder. A number of studies are looking at gene therapy, exon skipping and CRISPR interference to offer hope for the future. Accurate determination through confirmed diagnosis of the genetic mutation that has occurred also offers potential approaches beyond gene replacement for a specific group, namely in the case of diagnosis of a so-called nonsense mutation, a mutation where a stop codon is produced by the changing of a single base in the DNA sequence. This results in premature termination of protein biosynthesis, resulting in a shortened and either functionless or function-impaired protein. In what is sometimes called "read-through therapy", translational skipping of the stop codon, resulting in a functional protein, can be induced by the introduction of specific substances. However, this approach is only conceivable in the case of narrowly circumscribed mutations, which cause differing diseases.
Hearing loss with craniofacial syndromes is a common occurrence. Many of these multianomaly disorders involve structural malformations of the outer or middle ear, making a significant hearing loss highly likely.