Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Prostacyclin (prostaglandin I) is commonly considered the most effective treatment for PAH. Epoprostenol (synthetic prostacyclin) is given via continuous infusion that requires a semi-permanent central venous catheter. This delivery system can cause sepsis and thrombosis. Prostacyclin is unstable, and therefore has to be kept on ice during administration. Since it has a half-life of 3 to 5 minutes, the infusion has to be continuous, and interruption can be fatal. Other prostanoids have therefore been developed. Treprostinil can be given intravenously or subcutaneously, but the subcutaneous form can be very painful. An increased risk of sepsis with intravenous Remodulin has been reported by the CDC. Iloprost is also used in Europe intravenously and has a longer half life. Iloprost was the only inhaled form of prostacyclin approved for use in the US and Europe, until the inhaled form of treprostinil was approved by the FDA in July 2009.
The dual (ET and ET) endothelin receptor antagonist bosentan was approved in 2001. Sitaxentan (Thelin) was approved for use in Canada, Australia, and the European Union, but not in the United States. In 2010, Pfizer withdrew Thelin worldwide because of fatal liver complications. A similar drug, ambrisentan is marketed as Letairis in the U.S. by Gilead Sciences.
There is evidence to show that steroids given to babies less than 8 days old can prevent bronchopulmonary dysplasia. However, the risks of treatment may outweigh the benefits.
It is unclear if starting steroids more than 7 days after birth is harmful or beneficial. It is thus recommended that they only be used in those who cannot be taken off of a ventilator.
It is sometimes treated with surgery, which involves rerouting blood from the right atrium into the left atrium with a patch or use of the Warden procedure. However, interest is increasing in catheter-based interventional approaches, as well as medical therapy for less severe cases.
Corticosteroids are the mainstay of treatment of IPH, though they are controversial and lack clear evidence in their favour. They are thought to decrease the frequency of haemorrhage, while other studies suggest that they do not have any effect on the course or prognosis of this disease. In either case, steroid therapy has significant side effects. Small trials have investigated the use of other medications, but none has emerged as a clear standard of care. This includes immune modulators such as hydroxychloroquine, azathioprine, and cyclophosphamide. 6-mercaptopurine as a long-term therapy may prevent pulmonary haemorrhage. A 2007 scientific letter. reports preliminary success in preventing pulmonary haemorrhage with the anti-oxidant N-acetylcysteine.
Oxygen first aid treatment is useful for suspected gas embolism casualties or divers who have made fast ascents or missed decompression stops. Most fully closed-circuit rebreathers can deliver sustained high concentrations of oxygen-rich breathing gas and could be used as an alternative to pure open-circuit oxygen resuscitators. However pure oxygen from an oxygen cylinder through a Non-rebreather mask is the optimal way to deliver oxygen to a decompression illness patient.
Recompression is the most effective, though slow, treatment of gas embolism in divers. Normally this is carried out in a recompression chamber. As pressure increases, the solubility of a gas increases, which reduces bubble size by accelerating absorption of the gas into the surrounding blood and tissues. Additionally, the volumes of the gas bubbles decrease in inverse proportion to the ambient pressure as described by Boyle's law. In the hyperbaric chamber the patient may breathe 100% oxygen, at ambient pressures up to a depth equivalent of 18 msw. Under hyperbaric conditions, oxygen diffuses into the bubbles, displacing the nitrogen from the bubble and into solution in the blood. Oxygen bubbles are more easily tolerated. Diffusion of oxygen into the blood and tissues under hyperbaric conditions supports areas of the body which are deprived of blood flow when arteries are blocked by gas bubbles. This helps to reduce ischemic injury. The effects of hyperbaric oxygen also counteract the damage that can occur with reperfusion of previously ischemic areas; this damage is mediated by leukocytes (a type of white blood cell).
Most babies with ACD have normal Apgar scores at 1 and 5 minutes, but within minutes or hours present with hypoxia and upon investigation are found to have hypoxemia and pulmonary hypertension. Initial treatments address the hypoxia, usually beginning with supplemental oxygen and arrangements for urgent transport to a neonatal intensive care unit.
Therapies that have been tried to extend life include extracorporeal membrane oxygenation and nitric oxide. These are supportive therapies for persistent pulmonary hypertension; they do not treat the ACD. The objective of therapy is to keep the baby alive long enough to obtain a lung transplant.
Treatments for primary pulmonary hypertension such as prostacyclins and endothelin receptor antagonists can be fatal in people with PVOD due to the development of severe pulmonary edema, and worsening symptoms after initiation of these medications may be a clue to the diagnosis of pulmonary veno occlusive disease.
The definitive therapy is lung transplantation, though transplant rejection is always a possibility, in this measures must be taken in terms of appropriate treatment and medication.
If the inciting defect in the heart is identified "before" it causes significant pulmonary hypertension, it can normally be repaired through surgery, preventing the disease. After pulmonary hypertension is sufficient to reverse the blood flow through the defect, however, the maladaptation is considered irreversible, and a heart–lung transplant or a lung transplant with repair of the heart is the only curative option.
Transplantation is the final therapeutic option and only for patients with poor prognosis and quality of life. Timing and appropriateness of transplantation remain difficult decisions. 5-year and 10-year survival ranges between 70% and 80%, 50% and 70%, 30% and 50%, respectively. Since the average life expectancy of patients after lung transplantation is as low as 30% at 5 years, patients with "reasonable functional status" related to Eisenmenger syndrome have "improved survival with conservative medical care" compared with transplantation.
Various medicines and therapies for pulmonary hypertension are under investigation for treatment of the symptoms.
Different treatments have been used to manage pulmonary interstitial emphysema with variable success. Admission/transfer to a neonatal intensive care unit (NICU) is common and expected for patients with PIE.
Treatments include:
- Lateral decubitus position with the affected side down
- High-frequency ventilation
- Lobectomy
- Selective Main Bronchial Intubation and Occlusion
Management has generally been reported to be conservative, though deaths have been reported.
- Removal from water
- Observation
- Diuretics and / or Oxygen when necessary
- Episodes are generally self-limiting in the absence of other medical problems
Treatment is directed at correcting the underlying cause. Post-surgical atelectasis is treated by physiotherapy, focusing on deep breathing and encouraging coughing. An incentive spirometer is often used as part of the breathing exercises. Walking is also highly encouraged to improve lung inflation. People with chest deformities or neurologic conditions that cause shallow breathing for long periods may benefit from mechanical devices that assist their breathing. One method is continuous positive airway pressure, which delivers pressurized air or oxygen through a nose or face mask to help ensure that the alveoli do not collapse, even at the end of a breath. This is helpful, as partially inflated alveoli can be expanded more easily than collapsed alveoli. Sometimes additional respiratory support is needed with a mechanical ventilator.
The primary treatment for acute massive atelectasis is correction of the underlying cause. A blockage that cannot be removed by coughing or by suctioning the airways often can be removed by bronchoscopy. Antibiotics are given for an infection. Chronic atelectasis is often treated with antibiotics because infection is almost inevitable. In certain cases, the affected part of the lung may be surgically removed when recurring or chronic infections become disabling or bleeding is significant. If a tumor is blocking the airway, relieving the obstruction by surgery, radiation therapy, chemotherapy, or laser therapy may prevent atelectasis from progressing and recurrent obstructive pneumonia from developing.
Oxygen is given with a small amount of continuous positive airway pressure ("CPAP"), and intravenous fluids are administered to stabilize the blood sugar, blood salts, and blood pressure. If the baby's condition worsens, an endotracheal tube (breathing tube) is inserted into the trachea and intermittent breaths are given by a mechanical device. An exogenous preparation of surfactant, either synthetic or extracted from animal lungs, is given through the breathing tube into the lungs. Some of the most commonly used surfactants are Survanta or its generic form Beraksurf, derived from cow lungs, which can decrease the risk of death in hospitalized very-low-birth-weight infants by 30%. Such small premature infants may remain ventilated for months. A study shows that an aerosol of a perfluorocarbon such as perfluoromethyldecalin can reduce inflammation in swine model of IRDS. Chronic lung disease including bronchopulmonary dysplasia are common in severe RDS. The etiology of BPD is problematic and may be due to oxygen, overventilation or underventilation. The mortality rate for babies greater than 27 weeks gestation is less than 20%
Extracorporeal membrane oxygenation (ECMO) is a potential treatment, providing oxygenation through an apparatus that imitates the gas exchange process of the lungs. However, newborns cannot be placed on ECMO if they are under 4.5 pounds (2 kg), because they have extremely small vessels for cannulation, thus hindering adequate flow because of limitations from cannula size and subsequent higher resistance to blood flow (compare with vascular resistance). Furthermore, in infants aged less than 34 weeks of gestation several physiologic systems are not well-developed, specially the cerebral vasculature and germinal matrix, resulting in high sensitivity to slight changes in pH, PaO, and intracranial pressure. Subsequently, preterm infants are at unacceptably high risk for intraventricular hemorrhage (IVH) if administered ECMO at a gestational age less than 32 weeks.
- The INSURE Method
Henrik Verder is the inventor and pioneer of the INSURE method, a very effective approach to managing preterm neonates with respiratory distress. The method itself has been shown, through meta-analysis; to successfully decrease the use of mechanical ventilation and lower the incidence of bronchopulmonary dysplasia (BPD). Since its conception in 1989 the INSURE method has been academically cited in more than 500 papers. The first randomised study about the INSURE method was published in 1994 and a second randomised study in infants less than 30 weeks gestation was published by the group in 1999. In the last 15 years Henrik has worked with lung maturity diagnostics on gastric aspirates obtained at birth. By combining this diagnostic method with INSURE, Henrik has worked to further improve the clinical outcome of RDS. The lung maturity tests used have been the microbubble test, lamellar body counts (LBC) and measurements of lecithin-sphingomyelin ratio (L/S) with chemometrics, which involved a collaboration with Agnar Höskuldsson.
Let us consider some scenarios where there is a defect in ventilation and/ or perfusion of the lungs.
In condition such as pulmonary embolism, the pulmonary blood flow is affected, thus the ventilation of the lung is adequate, however there is a perfusion defect with defect in blood flow. Gas exchange thus becomes highly inefficient leading to hypoxemia as measured by arterial oxygenation. A ventilation perfusion scan or lung scintigraphy shows some areas of lungs being ventilated but not adequately perfused. This also leads to a high A-a gradient which is not responsive to oxygen
In conditions with right to left shunts, there is again a ventilation perfusion defect with high A-a gradient. However, the A-a gradient is responsive to oxygen therapy. In cases of right to left shunts more of deoxygenated blood mixes with oxygenated blood from the lungs and thus to a small extent the condition might neutralize the high A-a gradient with pure oxygen therapy.
Patient with parenchymal lung diseases will have an increased A-a gradient with moderate response to oxygen therapy.
A patient with hypoventilation will have complete response to 100% oxygen therapy
Acute respiratory distress syndrome is usually treated with mechanical ventilation in the intensive care unit (ICU). Mechanical ventilation is usually delivered through a rigid tube which enters the oral cavity and is secured in the airway (endotracheal intubation), or by tracheostomy when prolonged ventilation (≥2 weeks) is necessary. The role of non-invasive ventilation is limited to the very early period of the disease or to prevent worsening respiratory distress in individuals with atypical pneumonias, lung bruising, or major surgery patients, who are at risk of developing ARDS. Treatment of the underlying cause is crucial. Appropriate antibiotic therapy must be administered as soon as microbiological culture results are available, or clinical infection is suspected (whichever is earlier). Empirical therapy may be appropriate if local microbiological surveillance is efficient. The origin of infection, when surgically treatable, must be removed. When sepsis is diagnosed, appropriate local protocols should be enacted.
Inhaled nitric oxide (NO) selectively widens the lung's arteries which allows for more blood flow to open alveoli for gas exchange. Despite evidence of increased oxygenation status, there is no evidence that inhaled nitric oxide decreases morbidity and mortality in people with ARDS. Furthermore, nitric oxide may cause kidney damage and is not recommended as therapy for ARDS regardless of severity.
High incidence of relapse after hyperbaric oxygen treatment due to delayed cerebral edema.
Pulmonary interstitial emphysema often resolves gradually and may take 2–3 weeks. For longer durations of PIE the length of time of mechanical ventilation needed may increase and the incidence of bronchopulmonary dysplasia becomes higher. Some infants may develop chronic lobar emphysema, which may require surgical lobectomies.
To date, no treatment has been proven to effectively reverse or prevent the progression of PAM. Lung transplantation is an option for end stage disease, but is typically only recommended as a last resort when quality of life is significantly impaired.
Etidronate is a bisphosphonate and can reduce the formation of calcium hydroxyapatite crystals. It has led to clinical and radiological improvements in few cases.
Specific pretreatments, drugs to prevent chemically induced lung injuries due to respiratory airway toxins, are not available. Analgesic medications, oxygen, humidification, and ventilator support currently constitute standard therapy. In fact, mechanical ventilation remains the therapeutic mainstay for acute inhalation injury. The cornerstone of treatment is to keep the PaO2 > 60 mmHg (8.0 kPa), without causing injury to the lungs with excessive O2 or volutrauma. Pressure control ventilation is more versatile than volume control, although breaths should be volume limited, to prevent stretch injury to the alveoli. Positive end-expiratory pressure (PEEP) is used in mechanically ventilated patients with ARDS to improve oxygenation. Hemorrhaging, signifying substantial damage to the lining of the airways and lungs, can occur with exposure to highly corrosive chemicals and may require additional medical interventions. Corticosteroids are sometimes administered, and bronchodilators to treat bronchospasms. Drugs that reduce the inflammatory response, promote healing of tissues, and prevent the onset of pulmonary edema or secondary inflammation may be used following severe injury to prevent chronic scarring and airway narrowing.
Although current treatments can be administered in a controlled hospital setting, many hospitals are ill-suited for a situation involving mass casualties among civilians. Inexpensive positive-pressure devices that can be used easily in a mass casualty situation, and drugs to prevent inflammation and pulmonary edema are needed. Several drugs that have been approved by the FDA for other indications hold promise for treating chemically induced pulmonary edema. These include β2-agonists, dopamine, insulin, allopurinol, and non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen. Ibuprofen is particularly appealing because it has an established safety record and can be easily administered as an initial intervention. Inhaled and systemic forms of β2-agonists used in the treatment of asthma and other commonly used medications, such as insulin, dopamine, and allopurinol have also been effective in reducing pulmonary edema in animal models but require further study. A recent study documented in the "AANA Journal" discussed the use of volatile anesthetic agents, such as sevoflurane, to be used as a bronchodilator that lowered peak airway pressures and improved oxygenation. Other promising drugs in earlier stages of development act at various steps in the complex molecular pathways underlying pulmonary edema. Some of these potential drugs target the inflammatory response or the specific site(s) of injury. Others modulate the activity of ion channels that control fluid transport across lung membranes or target surfactant, a substance that lines the air sacs in the lungs and prevents them from collapsing. Mechanistic information based on toxicology, biochemistry, and physiology may be instrumental in determining new targets for therapy. Mechanistic studies may also aid in the development of new diagnostic approaches. Some chemicals generate metabolic byproducts that could be used for diagnosis, but detection of these byproducts may not be possible until many hours after initial exposure. Additional research must be directed at developing sensitive and specific tests to identify individuals quickly after they have been exposed to varying levels of chemicals toxic to the respiratory tract.
Currently there are no clinically approved agents that can reduce pulmonary and airway cell dropout and avert the transition to pulmonary and /or airway fibrosis.
In TAPVC without obstruction, surgical redirection can be performed within the first month of life. The operation is performed under general anesthesia. The four pulmonary veins are reconnected to the left atrium, and any associated heart defects such as atrial septal defect, ventricular septal defect, patent foramen ovale, and/or patent ductus arteriosus are surgically closed. With obstruction, surgery should be undertaken emergently. PGE1 should be given because a patent ductus arteriosus allows oxygenated blood to go from the circulation of the right heart to the systemic circulation.
Several patients have survived with atypical or “patchy ACDMPV” long enough to receive lung transplants. According to a 2013 case series conducted by St. Louis Children’s Hospital, four ACDMPV patients (ages 4 months, 5 months, 9 months and 20 months of age at time of transplant) with atypical presentations of ACDMPV each underwent a successful bilateral lung transplantation (BLT). As stated in the case study, “If they survive to BLT, patients with ACDMPV can have successful outcomes” and the ACDMPV patients “are alive at last follow-up at 1, 8, 9 and 12 years of age” (as of May 2013).
According to the St. Louis Children's Hospital (the Level I pediatric trauma center and pediatric teaching hospital for the Washington University School of Medicine), which is noted worldwide for its record in pediatric pulmonary transplantation, a type of artificial lung device, the Quadrox, was used after ECMO as a bridge to a dual lung transplant in ten-month-old Eleni Scott of the St. Louis suburb of Florissant, Missouri, who after transplantation returned to her home. Doctors have said it is too early to presume it will continue to work here or work in other pediatric patients as an experiment, much less a successful, curative standard therapy, but the infant has survived thus far, meaning that there might be hope for sufferers of this rare condition. For more information, please see the link to the news release.
Supportive care is the mainstay of therapy in TRALI. Oxygen supplementation is employed in all reported cases of TRALI and aggressive respiratory support is needed in 72 percent of patients. Intravenous administration of fluids, as well as vasopressors, are essential for blood pressure support. Use of diuretics, which are indicated in the management of transfusion associated circulatory overload (TACO), should be avoided in TRALI. Corticosteroids can be beneficial.
Death may occur rapidly with acute, massive pulmonary bleeding or over longer periods as the result of continued pulmonary failure and right heart failure. Historically, patients had an average survival of 2.5 years after diagnosis, but today 86% may survive beyond five years.
Giving the mother glucocorticoids speeds the production of surfactant. For very premature deliveries, a glucocorticoid is given without testing the fetal lung maturity. The American College of Obstetricians and Gynecologists (ACOG), Royal College of Medicine, and other major organizations have recommended antenatal glucocorticoid treatment for women at risk for preterm delivery prior to 34 weeks of gestation. Multiple courses of glucocorticoid administration, compared with a single course, does not seem to increase or decrease the risk of death or neurodevelopmental disorders of the child.
In pregnancies of greater than 30 weeks, the fetal lung maturity may be tested by sampling the amount of surfactant in the amniotic fluid by amniocentesis, wherein a needle is inserted through the mother's abdomen and uterus. Several tests are available that correlate with the production of surfactant. These include the lecithin-sphingomyelin ratio ("L/S ratio"), the presence of phosphatidylglycerol (PG), and more recently, the surfactant/albumin (S/A) ratio. For the L/S ratio, if the result is less than 2:1, the fetal lungs may be surfactant deficient. The presence of PG usually indicates fetal lung maturity. For the S/A ratio, the result is given as mg of surfactant per gm of protein. An S/A ratio 55 indicates mature surfactant production(correlates with an L/S ratio of 2.2 or greater).