Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
XX females with lipoid CAH may need estrogen replacement at or after puberty. Active intervention has been used to preserve the possibility of fertility and conception in lipoid CAH females. In a case report in 2009, a woman with late onset lipoid CAH due to StAR deficiency underwent hormone replacement therapy in combination with an assisted fertility technique, intracytoplasmic sperm injection. This led to ovulation and with implantation of the in vitro fertilized egg, a successful birth.
As with other forms of CAH, the primary therapy of 11β-hydroxylase deficient CAH is lifelong glucocorticoid replacement in sufficient doses to prevent adrenal insufficiency and suppress excess mineralocorticoid and androgen production.
Salt-wasting in infancy responds to intravenous saline, dextrose, and high dose hydrocortisone, but prolonged fludrocortisone replacement is usually not necessary. The hypertension is ameliorated by glucocorticoid suppression of DOC.
Long term glucocorticoid replacement issues are similar to those of 21-hydroxylase CAH, and involve careful balance between doses sufficient to suppress androgens while avoiding suppression of growth. Because the enzyme defect does not affect sex steroid synthesis, gonadal function at puberty and long-term fertility should be normal if adrenal androgen production is controlled. See congenital adrenal hyperplasia for a more detailed discussion of androgen suppression and fertility potential in adolescent and adult women.
Some of the childhood management issues are similar those of 21-hydroxylase deficiency:
- Replacing mineralocorticoid with fludrocortisone
- Suppressing DHEA and replacing cortisol with glucocorticoid
- Providing extra glucocorticoid for stress
- Close monitoring and perhaps other adjunctive measures to optimize growth
- Deciding whether surgical repair of virilized female genitalia is warranted
However, unlike 21-hydroxylase CAH, children with 3β-HSD CAH may be unable to produce adequate amounts of testosterone (boys) or estradiol (girls) to effect normal pubertal changes. Replacement testosterone or estrogen and progesterone can be initiated at adolescence and continued throughout adult life. Fertility may be impaired by the difficulty of providing appropriate sex hormone levels in the gonads even though the basic anatomy is present.
Treatment of all forms of CAH may include any of:
1. supplying enough glucocorticoid to reduce hyperplasia and overproduction of androgens or mineralocorticoids
2. providing replacement mineralocorticoid and extra salt if the person is deficient
3. providing replacement testosterone or estrogen at puberty if the person is deficient
4. additional treatments to optimize growth by delaying puberty or delaying bone maturation
All of these management issues are discussed in more detail in congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
Dexamethasone is used as an off-label early pre-natal treatment for the symptoms of CAH in female fetuses, but it does not treat the underlying congenital disorder. A 2007 Swedish clinical trial found that treatment may cause cognitive and behavioural defects, but the small number of test subjects means the study cannot be considered definitive. A 2012 American study found no negative short term outcomes, but "lower cognitive processing in CAH girls and women with long-term DEX exposure." Administration of pre-natal dexamethasone has been the subject of controversy over issues of informed consent and because treatment must predate a clinical diagnosis of CAH in the female fetus, especially because in utero dexamethasone may cause metabolic problems that are not evident until later in life; Swedish clinics ceased recruitment for research in 2010.
The treatment has also raised concerns in LGBT and bioethics communities following publication of an essay posted to the forum of the Hastings Center, and research in the Journal of Bioethical Inquiry, which found that pre-natal treatment of female fetuses was suggested to prevent those fetuses from becoming lesbians after birth, may make them more likely to engage in "traditionally" female-identified behaviour and careers, and more interested in bearing and raising children. Citing a known attempt by a man using his knowledge of the fraternal birth order effect to avoid having a homosexual son by using a surrogate, the essayists (Professor Alice Dreger of Northwestern University's Feinberg School of Medicine, Professor Ellen Feder of American University and attorney Anne Tamar-Mattis) suggest that pre-natal "dex" treatments constitute the first known attempt to use "in utero" protocols to reduce the incidence of homosexuality and bisexuality in humans. Research on the use of prenatal hormone treatments to prevent homosexuality stretches back to the early 1990s or earlier.
Since CAH is a recessive gene, both the mother and father must be recessive carriers of CAH for a child to have CAH. Due to advances in modern medicine, those couples with the recessive CAH genes have an option to prevent CAH in their offspring through preimplantation genetic diagnosis (PGD). In PGD, the egg is fertilized outside the women's body in a petri dish (IVF). On the 3rd day, when the embryo has developed from one cell to about 4 to 6 cells, one of those cells is removed from the embryo without harming the embryo. The embryo continues to grow until day 5 when it is either frozen or implanted into the mother. Meanwhile, the removed cell is analyzed to determine if the embryo has CAH. If the embryo is determined to have CAH, the parents may make a decision as to whether they wish to have it implanted in the mother or not.
Meta-analysis of the studies supporting the use of dexamethasone on CAH at-risk fetuses found "less than one half of one percent of published 'studies' of this intervention were regarded as being of high enough quality to provide meaningful data for a meta-analysis. Even these four studies were of low quality" ... "in ways so slipshod as to breach professional standards of medical ethics" and "there were no data on long-term follow-up of physical and metabolic outcomes in children exposed to dexamethasone".
Management of salt-wasting crises and mineralocorticoid treatment are as for other forms of salt-wasting congenital adrenal hyperplasias: saline and fludrocortisone.
Glucocorticoids can be provided at minimal replacement doses because there is no need for suppression of excessive adrenal androgens or mineralocorticoids. As with other forms of adrenal insufficiency, extra glucocorticoid is needed for stress coverage.
While there is no cure for JBS, treatment and management of specific symptoms and features of the disorder are applied and can often be successful. Variability in the severity of JBS on a case-by-case basis determines the requirements and effectiveness of any treatment selected.
Pancreatic insufficiency and malabsorption can be managed with pancreatic enzyme replacement therapy, such as pancrelipase supplementation and other related methods.
Craniofacial and skeletal deformities may require surgical correction, using techniques including bone grafts and osteotomy procedures. Sensorineural hearing loss can be managed with the use of hearing aids and educational services designated for the hearing impaired.
Special education, specialized counseling methods and occupational therapy designed for those with mental retardation have proven to be effective, for both the patient and their families. This, too, is carefully considered for JBS patients.
Hypertension and mineralocorticoid excess is treated with glucocorticoid replacement, as in other forms of CAH.
Most genetic females with both forms of the deficiency will need replacement estrogen to induce puberty. Most will also need periodic progestin to regularize menses. Fertility is usually reduced because egg maturation and ovulation is poorly supported by the reduced intra-ovarian steroid production.
The most difficult management decisions are posed by the more ambiguous genetic (XY) males. Most who are severely undervirilized, looking more female than male, are raised as females with surgical removal of the nonfunctional testes. If raised as males, a brief course of testosterone can be given in infancy to induce growth of the penis. Surgery may be able to repair the hypospadias. The testes should be salvaged by orchiopexy if possible. Testosterone must be replaced in order for puberty to occur and continued throughout adult life.
Pituitary tumors require treatment when they are causing specific symptoms, such as headaches, visual field defects or excessive hormone secretion. Transsphenoidal surgery (removal of the tumor by an operation through the nose and the sphenoidal sinuses) may, apart from addressing symptoms related to the tumor, also improve pituitary function, although the gland is sometimes damaged further as a result of the surgery. When the tumor is removed by craniotomy (opening the skull), recovery is less likely–but sometimes this is the only suitable way to approach the tumor. After surgery, it may take some time for hormone levels to change significantly. Retesting the pituitary hormone levels is therefore performed 2 to 3 months later.
Prolactinomas may respond to dopamine agonist treatment–medication that mimics the action of dopamine on the lactrotrope cells, usually bromocriptine or cabergoline. This approach may improve pituitary hormone secretion in more than half the cases, and make supplementary treatment unnecessary.
Other specific underlying causes are treated as normally. For example, hemochromatosis is treated by venesection, the regular removal of a fixed amount of blood. Eventually, this decreases the iron levels in the body and improves the function of the organs in which iron has accumulated.
In GRA, the hypersecretion of aldosterone and the accompanying hypertension are remedied when ACTH secretion is suppressed by administering glucocorticoids.
Dexamethasone, spironolactone and eplerenone have been used in treatment.
Most pituitary hormones can be replaced indirectly by administering the products of the effector glands: hydrocortisone (cortisol) for adrenal insufficiency, levothyroxine for hypothyroidism, testosterone for male hypogonadism, and estradiol for female hypogonadism (usually with a progestogen to inhibit unwanted effects on the uterus). Growth hormone is available in synthetic form, but needs to be administered parenterally (by injection). Antidiuretic hormone can be replaced by desmopressin (DDAVP) tablets or nose spray. Generally, the lowest dose of the replacement medication is used to restore wellbeing and correct the deranged results, as excessive doses would cause side-effects or complications. Those requiring hydrocortisone are usually instructed to increase their dose in physically stressful events such as injury, hospitalization and dental work as these are times when the normal supplementary dose may be inadequate, putting the patient at risk of adrenal crisis.
Long-term follow up by specialists in endocrinology is generally needed for people with known hypopituitarism. Apart from ensuring the right treatment is being used and at the right doses, this also provides an opportunity to deal with new symptoms and to address complications of treatment.
Difficult situations arise in deficiencies of the hypothalamus-pituitary-gonadal axis in people (both men and women) who experience infertility; infertility in hypopituitarism may be treated with subcutaneous infusions of FSH, human chorionic gonadotropin–which mimics the action of LH–and occasionally GnRH.
Diagnosis of cortisone reductase deficiency is done through analysis of cortisol to cortisone metabolite levels in blood samples. As of now, there is no treatment for cortisone reductase deficiency. Shots of cortisol are quickly metabolised into cortisone by the dysregulated 11β-HSD1 enzyme; however, symptoms can be treated. Treatment of hyperandroginism can be done through prescription of antiandrogens. They do so by inhibiting the release of gonadotropin and luteinizing hormone, both hormones in the pituitary, responsible for the production of testosterone.
Treatment of HH is usually with hormone replacement therapy, consisting of androgen and estrogen administration in males and females, respectively.
The treatment for hyperaldosteronism depends on the underlying cause. In people with a single benign tumor (adenoma), surgical removal (adrenalectomy) may be curative. This is usually performed laparoscopically, through several very small incisions. For people with hyperplasia of both glands, successful treatment is often achieved with spironolactone or eplerenone, drugs that block the effect of aldosterone. With its antiandrogen effect, spironolactone drug therapy may have a range of effects in males, including sometimes gynecomastia. These symptoms usually do not occur with eplerenone drug therapy.
In the absence of treatment, individuals with hyperaldosteronism often have poorly controlled high blood pressure, which may be associated with increased rates of stroke, heart disease, and kidney failure. With appropriate treatment, the prognosis is excellent.
Treatment is directed towards (1) correcting hypotension, hypovolemia, electrolyte imbalances, and metabolic acidosis; (2) improving vascular integrity, and (3) providing an immediate source of glucocorticoids. Rapid correction of hypovolemia is the first priority.
Most patients show dramatic improvement within 24 to 48 hours of appropriate fluid and glucocorticoid therapy. Over the ensuing 2 to 4 days, a gradual transition from IV fluids to oral water and food is undertaken, and maintenance mineralocorticoid and glucocorticoid therapy is initiated. Failure to make this transition smoothly should raise suspicion of insufficient glucocorticoid supplementation, concurrent endocrinopathy (e.g. hypothyroidism), or cocurrent illness (especially renal damage).
Treatment of hyperandrogenism varies with the underlying condition that causes it. As a hormonal symptom of polycystic ovary syndrome, menopause, and other endocrine disorders, it is primarily treated as a symptom of these disorders. Systemically, it is treated with antiandrogens such as cyproterone acetate, flutamide and spironolactone to control the androgen levels in the patient's body. For Hyperandrogenism caused by Late-Onset Congenital Adrenal Hyperplasia (CAH), treatment is primarily focused on providing the patient with Glucocorticoids to combat the low cortisol production and the corresponding increase in androgens caused by the swelling of the Adrenal Glands. Oestrogen-based oral contraceptives are used to treat both CAH and PCOS caused hyperandrogenism. These hormonal treatments have been found to reduce the androgen excess and suppress adrenal androgen production and cause a significant decrease in hirsutism.
Hyperandrogenism is often managed symptomatically. Hirsutism and acne both respond well to the hormonal treatments described above, with 60-100% reporting an improvement in hirsutism. Androgenic alopecia however, does not show a significant improvement with hormonal treatments and requires other treatments, such as hair transplantation.
Standard therapy involves intravenous injections of glucocorticoids and large volumes of intravenous saline solution with dextrose (glucose). This treatment usually brings rapid improvement. If intravenous access is not immediately available, intramuscular injection of glucocorticoids can be used. When the patient can take fluids and medications by mouth, the amount of glucocorticoids is decreased until a maintenance dose is reached. If aldosterone is deficient, maintenance therapy also includes oral doses of fludrocortisone acetate.
Life long hormone replacement therapy for the hormones that are missing.
Treatment for Addison's disease involves replacing the missing cortisol, sometimes in the form of hydrocortisone tablets, or prednisone tablets in a dosing regimen that mimics the physiological concentrations of cortisol. Alternatively, one-quarter as much prednisolone may be used for equal glucocorticoid effect as hydrocortisone. Treatment is usually lifelong. In addition, many patients require fludrocortisone as replacement for the missing aldosterone.
People with Addison's are often advised to carry information on them (e.g., in the form of a MedicAlert bracelet or information card) for the attention of emergency medical services personnel who might need to attend to their needs. It is also recommended that a needle, syringe, and injectable form of cortisol be carried for emergencies. People with Addison's disease are advised to increase their medication during periods of illness or when undergoing surgery or dental treatment. Immediate medical attention is needed when severe infections, vomiting, or diarrhea occur, as these conditions can precipitate an Addisonian crisis. A patient who is vomiting may require injections of hydrocortisone instead.
The goal of newborn screening programs is to detect and start treatment within the first 1–2 weeks of life. Treatment consists of a daily dose of thyroxine, available as a small tablet. The generic name is levothyroxine, and several brands are available. The tablet is crushed and given to the baby with a small amount of water or milk. The most commonly recommended dose range is 10-15 μg/kg daily, typically 12.5 to 37.5 or 44 μg.
Within a few weeks, the T and TSH levels are rechecked to confirm that they are being normalized by treatment. As the child grows up, these levels are checked regularly to maintain the right dose. The dose increases as the child grows.
The procedure to remedy micromastia is breast enlargement, most commonly augmentation mammoplasty using breast implants. Other techniques available involve using muscle flap-based reconstructive surgery techniques (latissimus dorsi and rectus abdominus muscles), microsurgical reconstruction, or fat grafting.
Another potential treatment is hormonal breast enhancement, such as with estrogens.
Treatment includes spironolactone, a potassium-sparing diuretic that works by acting as an aldosterone antagonist.
Aggressiveness of therapy depends on the clinical status of the patient and the nature of the insufficiency (glucocorticoid, mineralocorticoid, or both). Many dogs and cats with primary adrenal insufficiency are presented in Addisonian crisis and require immediate, aggressive therapy. In contrast, secondary insufficiency often has a chronic course.
Hypoadrenocorticism is treated with fludrocortisone (trade name Florinef) or a monthly injection of Percorten-V (desoxycorticosterone pivalate, DOCP) and prednisolone or Zycortal. Routine blood work is necessary in the initial stages until a maintenance dose is established. Most of the medications used in the therapy of hypoadrenocorticism cause excessive thirst and urination. It is absolutely vital to provide fresh drinking water for a canine suffering from this disorder.
If the owner knows about an upcoming stressful situation (shows, traveling etc.), the animals generally need an increased dose of prednisone to help deal with the added stress. Avoidance of stress is important for dogs with hypoadrenocorticism. Physical illness also stresses the body and may mean that the medication(s) need to be adjusted during this time. Most dogs with hypoadrenocorticism have an excellent prognosis after proper stabilization and treatment.
Medications consist mostly of antiandrogens, drugs that block the effects of androgens like testosterone and dihydrotestosterone (DHT) in the body, and include:
- Spironolactone: An antimineralocorticoid with additional antiandrogenic activity at high dosages
- Cyproterone acetate: A dual antiandrogen and progestogen. In addition to single form, it is also available in some formulations of combined oral contraceptives at a low dosage (see below). It has a risk of liver damage.
- Flutamide: A pure antiandrogen. It has been found to possess equivalent or greater effectiveness than spironolactone, cyproterone acetate, and finasteride in the treatment of hirsutism. However, it has a high risk of liver damage and hence is no longer recommended as a first- or second-line treatment.
- Bicalutamide: A pure antiandrogen. It is effective similarly to flutamide but is much safer as well as better-tolerated.
- Birth control pills: Consist of an estrogen, usually ethinylestradiol, and a progestin. They are thought to work by 1) stimulating production of sex hormone-binding globulin in the liver, which decreases free concentrations of testosterone in the blood; and by 2) suppressing luteinizing hormone (LH) secretion from the pituitary gland, which decreases production of testosterone by the gonads. Hence, they are functional antiandrogens. In addition, certain birth control pills contain a progestin that also has antiandrogenic activity. Examples include birth control pills containing cyproterone acetate, chlormadinone acetate, drospirenone, and dienogest.
- Finasteride and dutasteride: 5α-Reductase inhibitors. They inhibit the production of the potent androgen DHT.
- GnRH analogues: Suppress androgen production by the gonads and reduce androgen concentrations to castrate levels.
- Metformin: Antihyperglycemic drug used for diabetes mellitus. However, it is also effective in treatment of hirsutism associated with insulin resistance (e.g. polycystic ovary syndrome)
- Eflornithine: Blocks putrescine that is necessary for the growth of hair follicles
In cases of hyperandrogenism specifically due to congenital adrenal hyperplasia, administration of glucocorticoids will return androgen levels to normal.
Since risk factors are not known and vary among individuals with hyperandrogegism, there is no sure method to prevent this medical condition. Therefore, more longterm studies are needed first to find a cause for the condition before being able to find a sufficient method of prevention.
However, there are a few things that can help avoid long-term medical issues related to hyperandrogenism like PCOS. Getting checked by a medical professional for hyperandrogenism; especially if one has a family history of the condition, irregular periods, or diabetes; can be beneficial. Watching your weight and diet is also important in decreasing your chances, especially in obese females, since continued exercise and maintaining a healthy diet leads to an improved menstrual cycle as well as to decreased insulin levels and androgen concentrations.
Treatments for Glycerol Kinase Deficiency are targeted to treat the symptoms because there are no permanent treatments for this disease. The main way to treat these symptoms is by using corticosteroids, glucose infusion, or mineralocorticoids. Corticosteroids are steroid hormones that are naturally produced in the adrenal glands. These hormones regulate stress responses, carbohydrate metabolism, blood electrolyte levels, as well as other uses. The mineralocorticoids, such as aldosterone control many electrolyte levels and allow the kidneys to retain sodium. Glucose infusion is coupled with insulin infusion to monitor blood glucose levels and keep them stable.
Due to the multitude of varying symptoms of this disease, there is no specific treatment that will cure this disease altogether. The symptoms can be treated with many different treatments and combinations of medicines to try to find the correct combination to offset the specific symptoms. Everyone with Glycerol Kinase Deficiency has varying degrees of symptoms and thereby requires different medicines to be used in combination to treat the symptoms; however, this disease is not curable and the symptoms can only be managed, not treated fully.