Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Tympanostomy tubes are often needed and often more than one set during the person's childhood. Tonsillectomy is also often done to help with sleep apnea and throat infections. Surgery, however, does not always address the sleep apnea and a continuous positive airway pressure (CPAP) machine may be useful. Physical therapy and participation in physical education may improve motor skills. Evidence to support this in adults, however, is not very good.
Efforts to prevent respiratory syncytial virus (RSV) infection with human monoclonal antibodies should be considered, especially in those with heart problems. In those who develop dementia there is no evidence for memantine, donepezil, rivastigmine, or galantamine.
Plastic surgery has been suggested as a method of improving the appearance and thus the acceptance of people with Down syndrome. It has also been proposed as a way to improve speech. Evidence, however, does not support a meaningful difference in either of these outcomes. Plastic surgery on children with Down syndrome is uncommon, and continues to be controversial. The U.S. National Down Syndrome Society views the goal as one of mutual respect and acceptance, not appearance.
Many alternative medical techniques are used in Down syndrome; however, they are poorly supported by evidence. These include: dietary changes, massage, animal therapy, chiropractics and naturopathy, among others. Some proposed treatments may also be harmful.
Hearing aids or other amplification devices can be useful for language learning in those with hearing loss. Speech therapy may be useful and is recommended to be started around 9 months of age. As those with Down syndrome typically have good hand-eye coordination, learning sign language may be possible. Augmentative and alternative communication methods, such as pointing, body language, objects, or pictures, are often used to help with communication. Behavioral issues and mental illness are typically managed with counseling or medications.
Education programs before reaching school age may be useful. School-age children with Down syndrome may benefit from inclusive education (whereby students of differing abilities are placed in classes with their peers of the same age), provided some adjustments are made to the curriculum. Evidence to support this, however, is not very strong. In the United States, the Individuals with Disabilities Education Act of 1975 requires public schools generally to allow attendance by students with Down syndrome.
Individuals with Down syndrome may learn better visually. Drawing may help with language, speech, and reading skills. Children with Down syndrome still often have difficulty with sentence structure and grammar, as well as developing the ability to speak clearly. Several types of early intervention can help with cognitive development. Efforts to develop motor skills include physical therapy, speech and language therapy, and occupational therapy. Physical therapy focuses specifically on motor development and teaching children to interact with their environment. Speech and language therapy can help prepare for later language. Lastly, occupational therapy can help with skills needed for later independence.
Medical management of children with Trisomy 13 is planned on a case-by-case basis and depends on the individual circumstances of the patient. Treatment of Patau syndrome focuses on the particular physical problems with which each child is born. Many infants have difficulty surviving the first few days or weeks due to severe neurological problems or complex heart defects. Surgery may be necessary to repair heart defects or cleft lip and cleft palate. Physical, occupational, and speech therapy will help individuals with Patau syndrome reach their full developmental potential. Surviving children are described as happy and parents report that they enrich their lives. The cited study grouped Edwards syndrome, which is sometimes survivable beyond toddlerhood, along with Patau, hence the median age of 4 at the time of data collection.
Emanuel Syndrome does not have a cure, but individual symptoms may be treated. Assessments of individual systems, such as the cardiovascular, gastrointestinal, orthopedic, and neurological may be necessary to determine the extent of impairment and options for treatment.
The outcome of this disease is dependent on the severity of the cardiac defects. Approximately 1 in 3 children with this diagnosis require shunting for the hydrocephaly that is often a consequence. Some children require extra assistance or therapy for delayed psychomotor and speech development, including hypotonia.
The general prognosis for girls with tetrasomy X is relatively good. Due to the variability of symptoms, some tetrasomy X girls are able to function normally, whereas others will need medical attention throughout their lives. Traditionally, treatment for tetrasomy X has been management of the symptoms and support for learning. Most girls are placed on estrogen treatment to induce breast development, arrest longitudinal growth, and stimulate bone formation to prevent osteoporosis. Speech, occupational, and physical therapy may also be needed depending on the severity of the symptoms.
Most fetuses with triploidy do not survive to birth, and those that do usually pass within days. As there is no treatment for Triploidy, palliative care is given if a baby survives to birth. If Triploidy is diagnosed during the pregnancy, termination is often offered as an option due to the additional health risks for the mother (preeclampsia, a life-threatening condition, or choriocarcinoma, a type of cancer). Should a mother decide to carry until term or until a spontaneous miscarriage occurs, doctors will monitor her closely in case either condition develops.
Mosaic triploidy has an improved prognosis, but affected individuals have moderate to severe cognitive disabilities.
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
Edwards syndrome, also known as trisomy 18, is a genetic disorder caused by the presence of all, or part of a third copy of chromosome 18. Many parts of the body are affected. Babies are often born small and have heart defects. Other features include a small head, small jaw, clenched fists with overlapping fingers, and severe intellectual disability.
Most cases of Edwards syndrome occur due to problems during the formation of the reproductive cells or during early development. The rate of disease increases with the mother's age. Rarely cases may be inherited from a person's parents. Occasionally not all cells have the extra chromosome, known as mosaic trisomy, and symptoms in these cases may be less severe. Ultrasound can increase suspicion for the condition, which can be confirmed by amniocentesis.
Treatment is supportive. After having one child with the condition, the risk of having a second is typically around one percent. It is the second-most frequent condition due to a third chromosome at birth, after Down syndrome.
Edwards syndrome occurs in around one in 5,000 live births. Some studies suggest that more babies that survive to birth are female. Many of those affected die before birth. Survival beyond a year of life is around 5-25%. It is named after John Hilton Edwards, who first described the syndrome in 1960.
The first stage of treatment used to be a reversible colostomy. In this approach, the healthy end of the large intestine is cut and attached to an opening created on the front of the abdomen. The contents of the bowel are discharged through the hole in the abdomen and into a bag. Later, when the patient's weight, age, and condition are right, the "new" functional end of the bowel is connected with the anus. The first surgical treatment involving surgical resection followed by reanastomosis without a colostomy occurred as early as 1933 by Doctor Baird in Birmingham on a one-year-old boy.
In 2008/2009, 495 diagnoses of Edwards syndrome (trisomy 18) were made in England and Wales, 92% of which were made prenatally, resulting in 339 abortions, 49 stillbirths/miscarriages/fetal deaths, 72 unknown outcomes, and 35 live births. Because about 3% of cases with unknown outcomes are likely to result in a live birth, the total number of live births is estimated to be 37 (2008/09 data are provisional). Major causes of death include apnea and heart abnormalities. It is impossible to predict an exact prognosis during pregnancy or the neonatal period. Half of the infants with this condition do not survive beyond the first week of life. The median lifespan is five to 15 days. About 8-12% of infants survive longer than 1 year. One percent of children live to age 10, though a retrospective Canadian study of 254 children with trisomy 18 demonstrated ten year survival of 9.8%.
Even in syndromes with no known etiology, the presence of the associated symptoms with a statistically improbable correlation, normally leads the researchers to hypothesize that there exists an unknown underlying cause for all the described symptoms.
Treatment of Hirschsprung's disease consists of surgical removal (resection) of the abnormal section of the colon, followed by reanastomosis.
Triple X syndrome, also known as trisomy X and 47,XXX, is characterized by the presence of an extra X chromosome in each cell of a female. Those affected are often taller than average. Usually there are no other physical differences and normal fertility. Occasionally there are learning difficulties, decreased muscle tone, seizures, or kidney problems.
Triple X is due to a random event. Triple X can result either during the division of the mother's reproductive cells or during division of cells during early development. It is not typically inherited from one generation to the next. A form where only a percentage of the body cells contain XXX can also occur. Diagnosis is by chromosomal analysis.
Treatment may include speech therapy, physical therapy, and counseling. It occurs in about one in every 1,000 female births. It is estimated that 90% of those affected are not diagnosed as they either have no or only few symptoms. It was first identified in 1959.
With the Echidna, this kind of chromosomal arrangement is normal. In this species genetic sex differentiation works like this:
- 63 (XYXYXYXYX, male) and
- 64 (XXXXXXXXXX, female)
No treatment is available to cure or slow down the progression of aspartylglucosaminuria. Bone marrow transplants have been conducted in hope that the bone marrow will produce the missing enzyme. The results of the tests thus far have shown to be inconclusive.
Because the vast majority of triple X females are never diagnosed, it may be very difficult to make generalizations about the effects of this syndrome. The samples that were studied were small and may be nonrepresentative. Because of the lyonization, inactivation, and formation of Barr bodies in all female cells, only one X chromosome is active at any time. Thus, triple X syndrome most often has only mild effects or has no effects. The symptoms vary from person to person, with some women being more affected than others.
Since ear infections and respiratory infections are common for children diagnosed with aspartylglucosaminuria, it is best to have regular checkups for both the ears and the respiratory tract.
Extreme sensitivity to the sun’s rays may develop; the best way to protect an individual diagnosed with aspartylglucosaminuria is to have them wear sunglasses, hats or caps to protect their eyes.
Epilepsy and insomnia can both be treated with medication.
It will be beneficial to children who are diagnosed with AGU to receive an education from a school with special teaching.
Derivative 22 syndrome, or der(22), is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional chromosomal translocation t(11;22)(q23;q11), owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. An unbalanced translocation between chromosomes 11 & 22 is described as Emanuel syndrome. It was characterized in 1980.
Young–Madders syndrome, alternatively known as Pseudotrisomy 13 syndrome or holoprosencephaly–polydactyly syndrome, is a genetic disorder resulting from defective and duplicated chromosomes which result in holoprosencephaly, polydactyly, facial malformations and mental retardation, with a significant variance in the severity of symptoms being seen across known cases. Many cases often suffer with several other genetic disorders, and some have presented with hypoplasia, cleft lip, cardiac lesions and other heart defects. In one case in 1991 and another in 2000 the condition was found in siblings who were the product of incest. Many cases are diagnosed prenatally and often in siblings. Cases are almost fatal in the prenatal stage with babies being stillborn.
Though it is now thought that earlier cases were misdiagnosed as other genetic disorders with similar pathology—such as Smith–Lemli–Opitz syndrome—the earliest publicised recognition of the condition as a new, hitherto unclassified, genetic disorder was made by two British doctors in Leicester in 1987. Though they identified the condition, later named for them, they did not identify the genetic anomalies responsible but suspected a link with trisomy 13 due to the similar symptoms. With only one or two occurrences documented towards the end of the decade, a group of eight doctors published a five-patient case-study in 1991 which identified the likely chromosomal factors that caused the condition, similar to but distinct from trisomy 13, and gave it the name 'holoprosencephaly–polydactyly syndrome' based on its two most prolific presenting conditions. Later research showed that the condition could manifest in patients with normal karyotypes, without duplication of the chromosomes, and the most recent genetic research implicates problems with the gene code FBXW11 as a likely cause.
Most affected people have a stable clinical course but are often transfusion dependent.
Trisomy 22 is a chromosomal disorder in which there are three copies of chromosome 22 rather than two. It is a frequent cause of spontaneous abortion during the first trimester of pregnancy. Progression to the second trimester and live birth are rare. This disorder is found in individuals with an extra copy or a variation of chromosome 22 in some or all cells of their body. There are many kinds of disorders associated with Trisomy 22:
Emanuel Syndrome is named after the genetic contributions made by researcher Dr. Beverly Emanuel. This condition is assigned to individuals born with an unbalanced 11/22 translocation. That is, a fragment of chromosome 11 is moved, or translocated, to chromosome 22.
22q11 Deletion Syndrome is a rare condition which occurs in approximately 1 in 4000 births. This condition is identified when a band in the q11.2 section of the arm of chromosome 22 is missing or deleted. This condition has several different names: 22q11.2 Deletion Syndrome, Velocardiofacial syndrome, DiGeorge Syndrome, Conotruncal Anomaly Face syndrome, Opitz G/BBB Syndrome, and Cayler Cardiofacial Syndrome. The effects of this disorder are different in each individual but similarities exist such as heart defects, immune system problems, a distinctive facial appearance, learning challenges, cleft palate, hearing loss, kidney problems, hypocalcemia, and sometimes psychiatric issues.
22q11 microduplication syndrome is the opposite of the 22q11 deletion syndrome: in this condition, a band of q.11.2 section of chromosome 22 is duplicated. Individuals carrying this deficiency are relatively “normal” as in they don’t possess any major birth defects or major medical illnesses. This microduplication is more common than the deletion; this might be due to the milder phenotype of the individuals.
Phelan-McDermid Syndrome / 22q13 Deletion Syndrome is a condition caused by the deletion of the tip of the q arm on chromosome 22. Most individuals with this disorder experience cognitive delays; low muscle tone; and sleeping, eating, and behavioural issues.
Chromosome Ring 22 is a rare disorder caused by the break and re-join of both ends of chromosome 22, forming a ring. The effects on the individual with this disorder are dependent on the amount of genetic information lost during the break/re-join. Major characteristics for this disorder are intellectual disability, muscle weakness and lack of coordination.
Cat Eye Syndrome / Schmid Fraccaro Syndrome is a condition caused by a partial trisomy or tetrasomy in chromosome 22. A small extra chromosome is found, made up of the top half of chromosome 22 and a portion of the q arm at the q11.2 break. This chromosome can be found three or four times. This syndrome is referred as “Cat Eye” due to the eye appearance of reported affected individuals who have coloboma of the iris; however, this feature is only seen in about half of the cases.
Mosaic trisomy 22 is a disorder in which an extra chromosome 22 is found only in some cells of the body. The severity of each case is determined by the number of cells with this extra copy. Some characteristics of individuals with this condition are cardiac abnormalities, growth retardation, mental delay, etc.
Complete Trisomy 22 is in contrast with Mosaic trisomy 22; this disorder is characterized by an extra copy of chromosome 22 which is found in each cell of the body of the affected individual. These cases are very rare, and most of the affected individuals die before birth or shortly after.
Young–Madders syndrome is detectable from the fetal stage of development largely due to the distinctive consequences of holoprosencephaly, a spectrum of defects or malformations of the brain and face. Facial defects which may manifest in the eyes, nose, and upper lip, featuring cyclopia, anosmia, or in the growth of only a single central incisor, and severe overlapping of the bones of the skull. Cardiac and in some cases pulmonary deformities are present. Another signature deformity is bilateral polydactyly, and many patients also suffer from hypoplasia and genital deformities.
Exposure of spermatozoa to lifestyle, environmental and/or occupational hazards may increase the risk of aneuploidy. Cigarette smoke is a known aneugen (aneuploidy inducing agent). It is associated with increases in aneuploidy ranging from 1.5 to 3.0-fold. Other studies indicate factors such as alcohol consumption, occupational exposure to benzene, and exposure to the insecticides fenvalerate and carbaryl also increase aneuploidy.