Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of management for complement deficiency, immunosuppressive therapy should be used depending on the disease presented. A C1-INH concentrate can be used for angio-oedema (C1-INH deficiency).
Pneumococcus and haemophilus infections prevention can be taken via immunization for those with complement deficiency. Epsilon-aminocaproic acid could be used to treat hereditary C1-INH deficiency, though the possible side effect of intravascular thrombosis should be weighed.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
Patients with terminal complement pathway deficiency should receive meningococcal and pneumococcal vaccinations. They can receive live vaccines.
The mainstay of treatment consists of thymectomy and immunoglobulin replacement with IVIG (Kelesidis, 2010). Immunodeficiency does not resolve after thymectomy (Arnold, 2015). To treat the autoimmune component of the disease, immune-suppression is sometimes used and it is often challenging to determine if a patient’s symptoms are infectious or autoimmune (Arnold, 2015).
Patients should have serological testing for antibodies to toxoplasma and cytomegalovirus. If receiving a transfusion, CMV negative blood should be used in those with negative serological testing. Live vaccines should also be avoided (Kelesidis, 2010). The CDC recommends pneumococcal, meningococcal, and Hib vaccination in those with diminished humoral and cell-mediated immunity (Hamborsky, 2015).
Some have advocated treating prophylactically with TMP-SMX if CD4 counts are lower than 200 cells/mm^3, similar to AIDS patients (Kelesidis, 2010).
Symptoms can be reduced through avoidance of leucine, an amino acid. Leucine is a component of most protein-rich foods; therefore, a low-protein diet is recommended. Some isolated cases of this disorder have responded to supplemental biotin; this is not altogether surprising, consider that other biotin-related genetic disorders (such as biotinidase deficiency and holocarboxylase synthetase deficiency) can be treated solely with biotin. Individuals with these multiple carboxylase disorders have the same problem with leucine catabolism as those with 3-methylcrotonyl-CoA carboxylase deficiency.
In general, treatment for acquired partial lipodystrophy is limited to cosmetic, dietary, or medical options. Currently, no effective treatment exists to halt its progression.
Diet therapy has been shown to be of some value in the control of metabolic problems. The use of small, frequent feedings and partial substitution of medium-chain triglycerides for polyunsaturated fats appears to be beneficial.
Plastic surgery with implants of monolithic silicon rubber for correction of the deficient soft tissue of the face has been shown to be effective. False teeth may be useful in some cases for cosmetic reasons. Long-term treatment usually involves therapy for kidney and endocrine dysfunction.
Data on medications for APL are very limited. Thiazolidinediones have been used in the management of various types of lipodystrophies. They bind to peroxisome proliferator-activator receptor gamma (PPAR-gamma), which stimulates the transcription of genes responsible for growth and differentiation of adipocytes. A single report has suggested a beneficial effect from treatment with rosiglitazone on fat distribution in acquired partial lipodystrophy; however, preferential fat gain was in the lower body.
Direct drug therapy is administered according to the associated condition. Membranoproliferative glomerulonephritis and the presence of renal dysfunction largely determine the prognosis of acquired partial lipodystrophy. Standard guidelines for the management of renal disease should be followed. The course of membranoproliferative glomerulonephritis in acquired partial lipodystrophy has not been significantly altered by treatment with corticosteroids or cytotoxic medications. Recurrent bacterial infections, if severe, might be managed with prophylactic antibiotics.
Because the CD18 gene has been cloned and sequenced, this disorder is a potential candidate for gene therapy.
Immunosuppressive therapy may be used in "type I" of this condition, ketoconazole can be used for "autoimmune polyendocrine syndrome type I" under certain conditions The component diseases are managed as usual, the challenge is to detect the possibility of any of the syndromes, and to anticipate other manifestations. For example, in a person with known Type 2 autoimmune polyendocrine syndrome but no features of Addison's disease, regular screening for antibodies against 21-hydroxylase may prompt early intervention and hydrocortisone replacement to prevent characteristic crises
Complement deficiency is an immunodeficiency of absent or suboptimal functioning of one of the complement system proteins. Because there are redundancies in the immune system, many complement disorders are never diagnosed, some studies estimated that less than 10% are identified. "Hypocomplementemia" may be used more generally to refer to decreased complement levels while "secondary complement disorder" means decreased complement levels that are not directly due to a genetic cause but secondary to another medical condition.
Short-term prevention is normally administered before surgery or dental treatment. In Germany, C1-INH concentrate is used for this and given 1–1.5 hours before the procedure. In countries where C1-inhibitor concentrate is not available or only available in an emergency (laryngeal edema), high-dose androgen treatment is administered for 5–7 days.
The aim of acute treatment is to halt progression of the edema as quickly as possible, which can be life-saving, particularly if the swelling is in the larynx. In Germany, most acute treatment consists of C1 inhibitor concentrate from donor blood, which must be administered intravenously; however, in most European countries, C1 inhibitor concentrate is only available to patients who are participating in special programs. In emergency situations where C1 inhibitor concentrate is not available, fresh frozen plasma (FFP) can be used as an alternative, as it also contains C1 inhibitor.
Other treatment modalities can stimulate the synthesis of C1 inhibitor, or reduce C1 inhibitor consumption. Purified C1 inhibitor, derived from human blood, has been used in Europe since 1979. Several C1 inhibitor treatments are now available in the U.S. Food and Drug Administration and two C1 inhibitor products are now available in Canada. Berinert P (CSL Behring), which is pasteurized, was approved by the F.D.A. in 2009 for acute attacks. Cinryze (ViroPharma), which is nanofiltered, was approved by the F.D.A. in 2008 for prophylaxis. Ruconest (Pharming) is a recombinant C1 inhibitor approved in the US and Europe that does not carry the risk of infectious disease transmission due to human blood-borne pathogens.
The medication ecallantide inhibits plasma kallikrein, and was approved by the F.D.A. (but not in Europe) for acute attacks in 2009. Icatibant inhibits the bradykinin B2 receptor, and was approved in Europe and the USA.
In hereditary angioedema, specific stimuli that have previously led to attacks may need to be avoided in the future. It does not respond to antihistamines, corticosteroids, or epinephrine.
Diagnosis of cortisone reductase deficiency is done through analysis of cortisol to cortisone metabolite levels in blood samples. As of now, there is no treatment for cortisone reductase deficiency. Shots of cortisol are quickly metabolised into cortisone by the dysregulated 11β-HSD1 enzyme; however, symptoms can be treated. Treatment of hyperandroginism can be done through prescription of antiandrogens. They do so by inhibiting the release of gonadotropin and luteinizing hormone, both hormones in the pituitary, responsible for the production of testosterone.
A diet with carefully controlled levels of the amino acids leucine, isoleucine, and valine must be maintained at all times in order to prevent neurological damage. Since these three amino acids occur in all natural protein, and most natural foods contain some protein, any food intake must be closely monitored, and day-to-day protein intake calculated on a cumulative basis, to ensure individual tolerance levels are not exceeded at any time. As the MSUD diet is so protein-restricted, and adequate protein is a requirement for all humans, tailored metabolic formula containing all the other essential amino acids, as well as any vitamins, minerals, omega-3 fatty acids and trace elements (which may be lacking due to the limited range of permissible foods), are an essential aspect of MSUD management. These complement the MSUD patient's natural food intake to meet normal nutritional requirements without causing harm. If adequate calories cannot be obtained from natural food without exceeding protein tolerance, specialised low protein products such as starch-based baking mixtures, imitation rice and pasta may be prescribed, often alongside a protein-free carbohydrate powder added to food and/or drink, and increased at times of metabolic stress. Some patients with MSUD may also improve with administration of high doses of thiamine, a cofactor of the enzyme that causes the condition.
Suspect terminal complement pathway deficiency with patients who have more than one episode of Neisseria infection.
Initial complement tests often include C3 and C4, but not C5 through C9. Instead, the CH50 result may play a role in diagnosis: if the CH50 level is low but C3 and C4 are normal, then analysis of the individual terminal components may be warranted.
Usually MSUD patients are monitored by a dietitian. Liver transplantation is another treatment option that can completely and permanently normalise metabolic function, enabling discontinuation of nutritional supplements and strict monitoring of biochemistry and caloric intake, relaxation of MSUD-related lifestyle precautions, and an unrestricted diet. This procedure is most successful when performed at a young age, and weaning from immunosuppressants may even be possible in the long run. However, the surgery is a major undertaking requiring extensive hospitalisation and rigorous adherence to a tapering regime of medications. Following transplant, the risk of periodic rejection will always exist, as will the need for some degree of lifelong monitoring in this respect. Despite normalising clinical presentation, liver transplantation is not considered a cure for MSUD. The patient will still carry two copies of the mutated BKAD gene in each of their own cells, which will consequently still be unable to produce the missing enzyme. They will also still pass one mutated copy of the gene on to each of their biological children. As a major surgery the transplant procedure itself also carries standard risks, although the odds of its success are greatly elevated when the only indication for it is an inborn error of metabolism. In absence of a liver transplant, the MSUD diet must be adhered to strictly and permanently. However, in both treatment scenarios, with proper management, those afflicted are able to live healthy, normal lives without suffering the severe neurological damage associated with the disease.
Five interventional strategies can be used:
- Adding zinc to soil, called agronomic biofortification, which both increases crop yields and provides more dietary zinc.
- Adding zinc to food, called fortification.
- Adding zinc rich foods to diet. The foods with the highest concentration of zinc are proteins, especially animal meats, the highest being oysters. Per ounce, beef, pork, and lamb contain more zinc than fish. The dark meat of a chicken has more zinc than the light meat. Other good sources of zinc are nuts, whole grains, legumes, and yeast. Although whole grains and cereals are high in zinc, they also contain chelating phytates which bind zinc and reduce its bioavailability.
- Oral repletion via tablets (e.g. zinc gluconate) or liquid (e.g. zinc acetate). Oral zinc supplementation in healthy infants more than six months old has been shown to reduce the duration of any subsequent diarrheal episodes by about 11 hours.
- Oral repletion via multivitamin/mineral supplements containing zinc gluconate, sulfate, or acetate. It is not clear whether one form is better than another. Zinc is also found in some cold lozenges, nasal sprays, and nasal gels.
Avoidance of antitoxins that may cause serum sickness is the best way to prevent serum sickness. Although, sometimes, the benefits outweigh the risks in the case of a life-threatening bite or sting. Prophylactic antihistamines or corticosteroids may be used concomitant with the antitoxin. Skin testing may be done beforehand in order to identify individuals who may be at risk of a reaction. Physicians should make their patients aware of the drugs or antitoxins to which they are allergic if there is a reaction. The physician will then choose an alternate antitoxin if it's appropriate or continue with prophylactic measures.
Complement 4 deficiency is a genetic condition affecting complement component 4.
It can present with lupus-like symptoms.
Complement 2 deficiency is a type of complement deficiency caused by any one of several different alterations in the structure of complement component 2.
It has been associated with an increase in infections.
It can present similarly to systemic lupus erythematosus (SLE).
mTOR inhibitors :
- Everolimus
- Temsirolimus
mTOR is a kinase enzyme inside the cell that regulates cell growth, proliferation, and survival. mTOR inhibitors lead to cell cycle arrest in the G1 phase and also inhibits tumor angiogenesis by reducing synthesis of VEGF.
A Phase II trial of Evorolimus on relapsed DLBCL patients showed a 30% Overall Response Rate (ORR).
People affected by the severest, often life-threatening, complications of cryoglobulinemic disease require urgent plasmapharesis and/or plasma exchange in order to rapidly reduce the circulating levels of their cryoglobulins. Complications commonly requiring this intervention include: hyperviscosity disease with severe symptoms of neurological (e.g. stroke, mental impairment, and myelitis) and/or cardiovascular (e.g., congestive heart failure, myocardial infarction) disturbances; vasculitis-driven intestinal ischemia, intestinal perforation, cholecystitis, or pancreatitis, causing acute abdominal pain, general malaise, fever, and/or bloody bowel movements; vasculitis-driven pulmonary disturbances (e.g. coughing up blood, acute respiratory failure, X-ray evidence of diffuse pulmonary infiltrates caused by diffuse alveolar hemorrhage); and severe kidney dysfunction due to intravascular deposition of immunoglobulins or vasculitis. Along with this urgent treatment, severely symptomatic patients are commonly started on therapy to treat any underlying disease; this treatment is often supplemented with anti-inflammatory drugs such as corticosteroids (e.g., dexamethasone) and/or immunosuppressive drugs. Cases where no underlying disease is known are also often treated with the latter corticosteroid and immunosuppressive medications.
With discontinuation of offending agent, symptoms usually disappear within 4–5 days.
Corticosteroids, antihistamines, and analgesics are the main line of treatment. The choice depends on the severity of the reaction.
Use of plasmapheresis has also been described.
Properdin deficiency is a rare X-linked disease in which properdin, an important complement factor, is deficient. Affected individuals are susceptible to fulminant meningococcal disease.
Hospitalization for the diseased person is suggested because of the controlled environment because it may prevent nutritional deficiencies and skin infections. A decrease in severity of symptoms usually happens after a few weeks when treated redness and scaliness usually do not recur. In 10 percent of cases, the result of uncontrolled infections or severe electrolyte loss may be fatal.