Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Inhaled bronchodilators are the primary medications used, and result in a small overall benefit. The two major types are β agonists and anticholinergics; both exist in long-acting and short-acting forms. They reduce shortness of breath, wheeze, and exercise limitation, resulting in an improved quality of life. It is unclear if they change the progression of the underlying disease.
In those with mild disease, short-acting agents are recommended on an as needed basis. In those with more severe disease, long-acting agents are recommended. Long-acting agents partly work by improving hyperinflation. If long-acting bronchodilators are insufficient, then inhaled corticosteroids are typically added. With respect to long-acting agents, if tiotropium (a long-acting anticholinergic) or long-acting beta agonists (LABAs) are better is unclear, and trying each and continuing the one that worked best may be advisable. Both types of agent appear to reduce the risk of acute exacerbations by 15–25%. While both may be used at the same time, any benefit is of questionable significance.
Several short-acting β agonists are available, including salbutamol (albuterol) and terbutaline. They provide some relief of symptoms for four to six hours. Long-acting β agonists such as salmeterol, formoterol, and indacaterol are often used as maintenance therapy. Some feel the evidence of benefits is limited while others view the evidence of benefit as established. Long-term use appears safe in COPD with adverse effects include shakiness and heart palpitations. When used with inhaled steroids they increase the risk of pneumonia. While steroids and LABAs may work better together, it is unclear if this slight benefit outweighs the increased risks. Indacaterol requires an inhaled dose once a day, and is as effective as the other long-acting β agonist drugs that require twice-daily dosing for people with stable COPD.
Two main anticholinergics are used in COPD, ipratropium and tiotropium. Ipratropium is a short-acting agent, while tiotropium is long-acting. Tiotropium is associated with a decrease in exacerbations and improved quality of life, and tiotropium provides those benefits better than ipratropium. It does not appear to affect mortality or the overall hospitalization rate. Anticholinergics can cause dry mouth and urinary tract symptoms. They are also associated with increased risk of heart disease and stroke. Aclidinium, another long acting agent, reduces hospitalizations associated with COPD and improves quality of life. Aclinidinium has been used as an alternative to tiotropium, but which drug is more effective is not known.
Corticosteroids are usually used in inhaled form, but may also be used as tablets to treat and prevent acute exacerbations. While inhaled corticosteroids (ICSs) have not shown benefit for people with mild COPD, they decrease acute exacerbations in those with either moderate or severe disease. By themselves, they have no effect on overall one-year mortality. Whether they affect the progression of the disease is unknown. When used in combination with a LABA, they may decrease mortality compared to either ICSs or LABA alone. Inhaled steroids are associated with increased rates of pneumonia. Long-term treatment with steroid tablets is associated with significant side effects.
Different treatments have been used to manage pulmonary interstitial emphysema with variable success. Admission/transfer to a neonatal intensive care unit (NICU) is common and expected for patients with PIE.
Treatments include:
- Lateral decubitus position with the affected side down
- High-frequency ventilation
- Lobectomy
- Selective Main Bronchial Intubation and Occlusion
There is no standardized treatment for indium lung disease. Treatment options include pulmonary lavage and corticosteroid therapy. Prognostic factors were a matter of research as of 2012, but preliminary evidence suggests that duration of employment and reported use of respiratory protection are not prognostic factors, but the serum level of indium may be a prognostic factor - higher levels of serum indium have been associated with worse prognoses. Indium lung disease has been fatal in several cases.
Lung cancer may be related to indium lung disease, though indium is not a known carcinogen.
Pulmonary interstitial emphysema often resolves gradually and may take 2–3 weeks. For longer durations of PIE the length of time of mechanical ventilation needed may increase and the incidence of bronchopulmonary dysplasia becomes higher. Some infants may develop chronic lobar emphysema, which may require surgical lobectomies.
The National Institute of Occupational Safety and Health, Japan (JNIOSH) set limits for acceptable exposure at 0.0003 mg/m after the discovery of indium lung. Methods for reducing indium exposure are thought to be the best mode of protection. Medical surveillance of indium workers is also a method of prevention.
Subcutaneous emphysema is usually benign. Most of the time, SCE itself does not need treatment (though the conditions from which it results may); however, if the amount of air is large, it can interfere with breathing and be uncomfortable. It occasionally progresses to a state "Massive Subcutaneous Emphysema" which is quite uncomfortable and requires surgical drainage. When the amount of air pushed out of the airways or lung becomes massive, usually due to positive pressure ventilation, the eyelids swell so much that the patient cannot see. Also the pressure of the air may impede the blood flow to the areolae of the breast and skin of the scrotum or labia. This can lead to necrosis of the skin in these areas. The latter are urgent situations requiring rapid, adequate decompression. Severe cases can compress the trachea and do require treatment.
In severe cases of subcutaneous emphysema, catheters can be placed in the subcutaneous tissue to release the air. Small cuts, or "blow holes", may be made in the skin to release the gas. When subcutaneous emphysema occurs due to pneumothorax, a chest tube is frequently used to control the latter; this eliminates the source of the air entering the subcutaneous space. If the volume of subcutaneous air is increasing, it may be that the chest tube is not removing air rapidly enough, so it may be replaced with a larger one. Suction may also be applied to the tube to remove air faster. The progression of the condition can be monitored by marking the boundaries with a special pencil for marking on skin.
Since treatment usually involves dealing with the underlying condition, cases of spontaneous subcutaneous emphysema may require nothing more than bed rest, medication to control pain, and perhaps supplemental oxygen. Breathing oxygen may help the body to absorb the subcutaneous air more quickly.
Patients with single aspergillomas generally do well with surgery to remove the aspergilloma, and are best given pre-and post-operative antifungal drugs. Often, no treatment is necessary. However, if a patient coughs up blood (haemoptysis), treatment may be required (usually angiography and embolisation, surgery or taking tranexamic acid). Angiography (injection of dye into the blood vessels) may be used to find the site of bleeding which may be stopped by shooting tiny pellets into the bleeding vessel.
For chronic cavitary pulmonary aspergillosis and chronic fibrosing pulmonary aspergillosis, lifelong use of antifungal drugs is usual. Itraconazole and voriconazole are first and second-line anti fungal agents respectively. Posaconazole can be used as third-line agent, for patients who are intolerant of or developed resistance to the first and second-line agents. Regular chest X-rays, serological and mycological parameters as well as quality of life questionnaires are used to monitor treatment progress. It is important to monitor the blood levels of antifungals to ensure optimal dosing as individuals vary in their absorption levels of these drugs.
The tissues in the mediastinum will slowly resorb the air in the cavity so most pneumomediastinums are treated conservatively. Breathing high flow oxygen will increase the absorption of the air.
If the air is under pressure and compressing the heart, a needle may be inserted into the cavity, releasing the air.
Surgery may be needed to repair the hole in the trachea, esophagus or bowel.
If there is lung collapse, it is imperative the affected individual lies on the side of the collapse, although painful, this allows full inflation of the unaffected lung.
Silicosis is a permanent disease with no cure. Treatment options currently available focus on alleviating the symptoms and preventing any further progress of the condition. These include:
- Stopping further exposure to airborne silica, silica dust and other lung irritants, including tobacco smoking.
- Cough suppressants.
- Antibiotics for bacterial lung infection.
- TB prophylaxis for those with positive tuberculin skin test or IGRA blood test.
- Prolonged anti-tuberculosis (multi-drug regimen) for those with active TB.
- Chest physiotherapy to help the bronchial drainage of mucus.
- Oxygen administration to treat hypoxemia, if present.
- Bronchodilators to facilitate breathing.
- Lung transplantation to replace the damaged lung tissue is the most effective treatment, but is associated with severe risks of its own.
- For acute silicosis, bronchoalveolar lavage may alleviate symptoms, but does not decrease overall mortality.
Experimental treatments include:
- Inhalation of powdered aluminium, d-penicillamine and polyvinyl pyridine-N-oxide.
- Corticosteroid therapy.
- Chinese Herbal Kombucha
- The herbal extract tetrandrine may slow progression of silicosis.
Air in subcutaneous tissue does not usually pose a lethal threat; small amounts of air are reabsorbed by the body. Once the pneumothorax or pneumomediastinum that causes the subcutaneous emphysema is resolved, with or without medical intervention, the subcutaneous emphysema will usually clear. However, spontaneous subcutaneous emphysema can, in rare cases, progress to a life-threatening condition, and subcutaneous emphysema due to mechanical ventilation may induce ventilatory failure.
If pneumothorax occurs in a smoker, this is considered an opportunity to emphasize the markedly increased risk of recurrence in those who continue to smoke, and the many benefits of smoking cessation. It may be advisable for someone to remain off work for up to a week after a spontaneous pneumothorax. If the person normally performs heavy manual labor, several weeks may be required. Those who have undergone pleurodesis may need two to three weeks off work to recover.
Air travel is discouraged for up to seven days after complete resolution of a pneumothorax if recurrence does not occur. Underwater diving is considered unsafe after an episode of pneumothorax unless a preventative procedure has been performed. Professional guidelines suggest that pleurectomy be performed on both lungs and that lung function tests and CT scan normalize before diving is resumed. Aircraft pilots may also require assessment for surgery.
Pleurodesis is a procedure that permanently eliminates the pleural space and attaches the lung to the chest wall. No long-term study (20 years or more) has been performed on its consequences. Good results in the short term are achieved with a thoracotomy (surgical opening of the chest) with identification of any source of air leakage and stapling of blebs followed by pleurectomy (stripping of the pleural lining) of the outer pleural layer and pleural abrasion (scraping of the pleura) of the inner layer. During the healing process, the lung adheres to the chest wall, effectively obliterating the pleural space. Recurrence rates are approximately 1%. Post-thoracotomy pain is relatively common.
A less invasive approach is thoracoscopy, usually in the form of a procedure called video-assisted thoracoscopic surgery (VATS). The results from VATS-based pleural abrasion are slightly worse than those achieved using thoracotomy in the short term, but produce smaller scars in the skin. Compared to open thoracotomy, VATS offers a shorter in-hospital stays, less need for postoperative pain control, and a reduced risk of lung problems after surgery. VATS may also be used to achieve chemical pleurodesis; this involves insufflation of talc, which activates an inflammatory reaction that causes the lung to adhere to the chest wall.
If a chest tube is already in place, various agents may be instilled through the tube to achieve chemical pleurodesis, such as talc, tetracycline, minocycline or doxycycline. Results of chemical pleurodesis tend to be worse than when using surgical approaches, but talc pleurodesis has been found to have few negative long-term consequences in younger people.
Chronic obstructive pulmonary disease (COPD), also known as chronic obstructive airways disease (COAD) or chronic airflow limitation (CAL), is a group of illnesses characterised by airflow limitation that is not fully reversible. The flow of air into and out of the lungs is impaired. This can be measured with breathing devices such as a peak flow meter or by spirometry. The term COPD includes the conditions emphysema and chronic bronchitis although most patients with COPD have characteristics of both conditions to varying degrees. Asthma being a reversible obstruction of airways is often considered separately, but many COPD patients also have some degree of reversibility in their airways.
In COPD, there is an increase in airway resistance, shown by a decrease in the forced expiratory volume in 1 second (FEV1) measured by spirometry. COPD is defined as a forced expiratory volume in 1 second to forced vital capacity ratio (FEV1/FVC) that is less than 0.7. The residual volume, the volume of air left in the lungs following full expiration, is often increased in COPD, as is the total lung capacity, while the vital capacity remains relatively normal. The increased total lung capacity (hyperinflation) can result in the clinical feature of a "barrel chest" - a chest with a large front-to-back diameter that occurs in some individuals with COPD. Hyperinflation can also be seen on a chest x-ray as a flattening of the diaphragm.
The most common cause of COPD is cigarette smoking. COPD is a gradually progressive condition and usually only develops after about 20 pack-years of smoking. COPD may also be caused by breathing in other particles and gases.
The diagnosis of COPD is established through spirometry although other pulmonary function tests can be helpful. A chest x-ray is often ordered to look for hyperinflation and rule out other lung conditions but the lung damage of COPD is not always visible on a chest x-ray. Emphysema, for example can only be seen on CT scan.
The main form of long term management involves the use of inhaled bronchodilators (specifically beta agonists and anticholinergics) and inhaled corticosteroids. Many patients eventually require oxygen supplementation at home. In severe cases that are difficult to control, chronic treatment with oral corticosteroids may be necessary, although this is fraught with significant side-effects.
COPD is generally irreversible although lung function can partially recover if the patient stops smoking. Smoking cessation is an essential aspect of treatment. Pulmonary rehabilitation programmes involve intensive exercise training combined with education and are effective in improving shortness of breath. Severe emphysema has been treated with lung volume reduction surgery, with some success in carefully chosen cases. Lung transplantation is also performed for severe COPD in carefully chosen cases.
Alpha 1-antitrypsin deficiency is a fairly rare genetic condition that results in COPD (particularly emphysema) due to a lack of the antitrypsin protein which protects the fragile alveolar walls from protease enzymes released by inflammatory processes.
Beta2-adrenergic agonists are recommended for bronchospasm.
- Short acting (SABA)
- Terbutaline
- Salbutamol
- Levosalbutamol
- Long acting (LABA)
- Formoterol
- Salmeterol
- Others
- Dopamine
- Norepinephrine
- Epinephrine
The neurotransmitter acetylcholine is known to decrease sympathetic response by slowing the heart rate and constricting the smooth muscle tissue. Ongoing research and successful clinical trials have shown that agents such as diphenhydramine, atropine and Ipratropium bromide (all of which act as receptor antagonists of muscarinic acetylcholine receptors) are effective for treating asthma and COPD-related symptoms .
The best treatment is to avoid the provoking allergen, as chronic exposure can cause permanent damage. Corticosteroids such as prednisolone may help to control symptoms but may produce side-effects.
Treatment of lung disease may include bronchodilators, inhaled steroids, and when infections occur antibiotics. Intravenous infusions of the A1AT protein or in severe disease lung transplantation may also be recommended. In those with severe liver disease liver transplantation may be an option. Avoiding smoking and vaccination for influenza, pneumococcus, and hepatitis is also recommended.
People with lung disease due to A1AD may receive intravenous infusions of alpha-1 antitrypsin, derived from donated human plasma. This augmentation therapy is thought to arrest the course of the disease and halt any further damage to the lungs. Long-term studies of the effectiveness of A1AT replacement therapy are not available. It is currently recommended that patients begin augmentation therapy only after the onset of emphysema symptoms.
As of 2015 there are four IV augmentation therapy manufacturers in the United States, Canada, and several European countries. Intravenous (IV) therapies are the standard mode of augmentation therapy delivery. Researchers are exploring inhaled therapies. IV augmentation therapies are manufactured by the following companies and have been shown to be clinically identical to one another in terms of dosage and efficacy.
Augmentation therapy is not appropriate for people with liver disease; treatment of A1AD-related liver damage focuses on alleviating the symptoms of the disease. In severe cases, liver transplantation may be necessary.
Obstructive lung disease is a category of respiratory disease characterized by airway obstruction. Many obstructive diseases of the lung result from narrowing (obstruction) of the smaller bronchi and larger bronchioles, often because of excessive contraction of the smooth muscle itself. It is generally characterized by inflamed and easily collapsible airways, obstruction to airflow, problems exhaling and frequent medical clinic visits and hospitalizations. Types of obstructive lung disease include; asthma, bronchiectasis, bronchitis and chronic obstructive pulmonary disease (COPD). Although COPD shares similar characteristics with all other obstructive lung diseases, such as the signs of coughing and wheezing, they are distinct conditions in terms of disease onset, frequency of symptoms and reversibility of airway obstruction. Cystic fibrosis is also sometimes included in obstructive pulmonary disease.
Respiratory disease is a medical term that encompasses pathological conditions affecting the organs and tissues that make gas exchange possible in higher organisms, and includes conditions of the upper respiratory tract, trachea, bronchi, bronchioles, alveoli, pleura and pleural cavity, and the nerves and muscles of breathing. Respiratory diseases range from mild and self-limiting, such as the common cold, to life-threatening entities like bacterial pneumonia, pulmonary embolism, acute asthma and lung cancer.
The study of respiratory disease is known as pulmonology. A doctor who specializes in respiratory disease is known as a pulmonologist, a chest medicine specialist, a respiratory medicine specialist, a respirologist or a thoracic medicine specialist.
Respiratory diseases can be classified in many different ways, including by the organ or tissue involved, by the type and pattern of associated signs and symptoms, or by the cause of the disease.
The best way to prevent silicosis is to identify work-place activities that produce respirable crystalline silica dust and then to eliminate or control the dust ("primary prevention"). Water spray is often used where dust emanates. Dust can also be controlled through dry air filtering.
Following observations on industry workers in Lucknow (India), experiments on rats found that jaggery (a traditional sugar) had a preventive action against silicosis.
Chronic respiratory diseases (CRDs) are diseases of the airways and other structures of the lung. This disease could be characterized by a high inflammatory cells recruitment (neutrophil) and/or destructive cycle of infection, (e.g. mediated by "Pseudomonas aeruginosa"). Some of the most common are asthma, chronic obstructive pulmonary disease, or acute respiratory distress syndrome . CRDs are not curable, however, various forms of treatment that help dilate major air passages and improve shortness of breath can help control symptoms and increase the quality of life for people with the disease.
it usually lasts for three months to two years
Treatment is supportive. Hamman's syndrome tends to be benign and self-limiting. It is important to differentiate it from far more serious conditions that have similar symptoms, such as Boerhaave's syndrome.
Treatment of TBI varies based on the location and severity of injury and whether the patient is stable or having trouble breathing, but ensuring that the airway is patent so that the patient can breathe is always of paramount importance. Ensuring an open airway and adequate ventilation may be difficult in people with TBI. Intubation, one method to secure the airway, may be used to bypass a disruption in the airway in order to send air to the lungs. If necessary, a tube can be placed into the uninjured bronchus, and a single lung can be ventilated. If there is a penetrating injury to the neck through which air is escaping, the trachea may be intubated through the wound. Multiple unsuccessful attempts at conventional (direct) laryngoscopy may threaten the airway, so alternative techniques to visualize the airway, such as fiberoptic or video laryngoscopy, may be employed to facilitate tracheal intubation. If the upper trachea is injured, an incision can be made in the trachea (tracheotomy) or the cricothyroid membrane (cricothyrotomy, or cricothyroidotomy) in order to ensure an open airway. However, cricothyrotomy may not be useful if the trachea is lacerated below the site of the artificial airway. Tracheotomy is used sparingly because it can cause complications such as infections and narrowing of the trachea and larynx. When it is impossible to establish a sufficient airway, or when complicated surgery must be performed, cardiopulmonary bypass may be used—blood is pumped out of the body, oxygenated by a machine, and pumped back in. If a pneumothorax occurs, a chest tube may be inserted into the pleural cavity to remove the air.
People with TBI are provided with supplemental oxygen and may need mechanical ventilation. Employment of certain measures such as Positive end-expiratory pressure (PEEP) and ventilation at higher-than-normal pressures may be helpful in maintaining adequate oxygenation. However, such measures can also increase leakage of air through a tear, and can stress the sutures in a tear that has been surgically repaired; therefore the lowest possible airway pressures that still maintain oxygenation are typically used. Mechanical ventilation can also cause pulmonary barotrauma when high pressure is required to ventilate the lungs. Techniques such as pulmonary toilet (removal of secretions), fluid management, and treatment of pneumonia are employed to improve pulmonary compliance (the elasticity of the lungs).
While TBI may be managed without surgery, surgical repair of the tear is considered standard in the treatment of most TBI. It is required if a tear interferes with ventilation; if mediastinitis (inflammation of the tissues in the mid-chest) occurs; or if subcutaneous or mediastinal emphysema progresses rapidly; or if air leak or large pneumothorax is persistent despite chest tube placement. Other indications for surgery are a tear more than one third the circumference of the airway, tears with loss of tissue, and a need for positive pressure ventilation. Damaged tissue around a rupture (e.g. torn or scarred tissue) may be removed in order to obtain clean edges that can be surgically repaired. Debridement of damaged tissue can shorten the trachea by as much as 50%. Repair of extensive tears can include sewing a flap of tissue taken from the membranes surrounding the heart or lungs (the pericardium and pleura, respectively) over the sutures to protect them. When lung tissue is destroyed as a result of TBI complications, pneumonectomy or lobectomy (removal of a lung or of one lobe, respectively) may be required. Pneumonectomy is avoided whenever possible due to the high rate of death associated with the procedure. Surgery to repair a tear in the tracheobronchial tree can be successful even when it is performed months after the trauma, as can occur if the diagnosis of TBI is delayed. When airway stenosis results after delayed diagnosis, surgery is similar to that performed after early diagnosis: the stenotic section is removed and the cut airway is repaired.