Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When an underlying medical condition is causing the neuropathy, treatment should first be directed at this condition. For example, if weight gain is the underlying cause, then a weight loss program is the most appropriate treatment. Compression neuropathy occurring in pregnancy often resolves after delivery, so no specific treatment is usually required. Some compression neuropathies are amenable to surgery: carpal tunnel syndrome and cubital tunnel syndrome are two common examples. Whether or not it is appropriate to offer surgery in any particular case depends on the severity of the symptoms, the risks of the proposed operation, and the prognosis if untreated. After surgery, the symptoms may resolve completely, but if the compression was sufficiently severe or prolonged then the nerve may not recover fully and some symptoms may persist. Drug treatment may be useful for an underlying condition (including peripheral oedema), or for ameliorating neuropathic pain.
The first line of treatment is often to treat the patients pain with neuropathic drugs such as tricyclic antidepressants, serotonin reuptake inhibitors, and anticonvulsants. The second lines of drugs to treat pain are non-steroidal anti-inflammatories, tramadol, and opioids. Other techniques used to facilitate healing of the nerve and pain are either static or dynamic splinting that can both help protect the injured part as well as improve function. Sometimes surgery is an option, although the prognosis is still very poor of regaining function of the affected nerve. The goal of surgery is to join healthy nerve to unhealthy nerve. The most common surgical techniques include external neurolysis, end-to-end repair, nerve grafting, and nerve transfer from somewhere else in the body.
While conservative approaches for rehabilitation are ideal, some patients will not improve and surgery is still an option. Patients with large cervical disk bulges may be recommended for surgery, however most often conservative management will help the herniation regress naturally. Procedures such as foraminotomy, laminotomy, or discectomy may be considered by neurosurgeons and orthopedic surgeons.
Ideally, effective treatment aims to resolve the underlying cause and restores the nerve root to normal function. Common conservative treatment approaches include physical therapy and chiropractic. A systematic review found moderate quality evidence that spinal manipulation is effective for the treatment of acute lumbar radiculopathy and cervical radiculopathy. Only low level evidence was found to support spinal manipulation for the treatment of chronic lumbar radiculopathies, and no evidence was found to exist for treatment of thoracic radiculopathy.
While pain symptoms may be effectively controlled using medications such as NSAID, amitriptyline, or vitamin B6 supplementation, effective treatment generally requires resolving the underlying cause.
Mild to moderate symptoms, such as pain or paresthesia, are treated conservatively with non-surgical approaches. Physiotherapy treatments can prove effective at treating cubital tunnel syndrome symptoms and can include:
- Joint mobilizations
- Neural flossing/gliding
- Strengthening/stretching exercises
- Activity modification
It is important to identify positions and activities that aggravate symptoms and to find ways to avoid them. For example, if the person experiences symptoms when holding a telephone up to the head, then the use of a telephone headset will provide immediate symptomatic relief and reduce the likelihood of further damage and inflammation to the nerve. For cubital tunnel syndrome, it is recommended to avoid repetitive elbow flexion and also avoiding prolonged elbow flexion during sleep, as this position puts stress of the ulnar nerve.
Surgery is recommended for those who are not improved with conservative therapy or those with serious or progressive symptoms. The surgical approaches vary, and may depend on the location or cause of impingement. Cubital and ulnar tunnel release can be performed wide awake with no general anaesthesia, no regional anaesthesia, no sedation and no tourniquet, and are usually done by Plastic Surgeons
There is no current treatment, however management of hereditary neuropathy with liability to pressure palsy can be done via:
- Occupational therapist
- Ankle/foot orthosis
- Wrist splint (medicine)
- Avoid repetitive movements
Often the most important goal for patients with CMT is to maintain movement, muscle strength, and flexibility. Therefore, an interprofessional team approach with occupational therapy, physical therapy, orthotist, podiatrist and or orthopedic surgeon is recommended. PT typically focuses on muscle strength training, muscle, and ligament stretching while OT can provide education on energy conservation strategies and moderate aerobic exercise in activities of daily living. Physical therapy should be involved in designing an exercise program that fits a person's personal strengths and flexibility. Bracing can also be used to correct problems caused by CMT. An orthotist may address gait abnormalities by prescribing the use of ankle-foot orthoses (AFOs). These orthoses help control foot drop and ankle instability and often provide a better sense of balance for patients. Appropriate footwear is also very important for people with CMT, but they often have difficulty finding well-fitting shoes because of their high arched feet and hammer toes. Due to the lack of good sensory reception in the feet, CMT patients may also need to see a podiatrist for help in trimming nails or removing calluses that develop on the pads of the feet. A final decision a patient can make is to have surgery. Using a podiatrist or an orthopedic surgeon, patients can choose to stabilize their feet or correct progressive problems. These procedures include straightening and pinning the toes, lowering the arch, and sometimes, fusing the ankle joint to provide stability. CMT patients must take extra care to avoid falling because fractures take longer to heal in someone with an underlying disease process. Additionally, the resulting inactivity may cause the CMT to worsen.
The Charcot-Marie-Tooth Association classifies the chemotherapy drug vincristine as a "definite high risk" and states that "vincristine has been proven hazardous and should be avoided by all CMT patients, including those with no symptoms."
There are also several corrective surgical procedures that can be done to improve physical condition.
Surgical decompression can give excellent results if the clinical picture and the EMG suggest a compression neuropathy.
In brachial plexus neuritis, conservative management may be more appropriate.
Spontaneous recovery has been reported, but is said to be delayed and incomplete.
There is a role for physiotherapy and this should be directed specifically towards the pattern of pain and symptoms. Soft tissue massage, stretches and exercises to directly mobilise the nerve tissue may be used.
Electrical stimulation can promote nerve regeneration. The frequency of stimulation is an important factor in the success of both quality and quantity of axon regeneration as well as growth of the surrounding myelin and blood vessels that support the axon. Histological analysis and measurement of regeneration showed that low frequency stimulation had a more successful outcome than high frequency stimulation on regeneration of damaged sciatic nerves.
Surgery can be done in case a nerve has become cut or otherwise divided. Recovery of a nerve after surgical repair depends mainly on the age of the patient. Young children can recover close-to-normal nerve function. In contrast, a patient over 60 years old with a cut nerve in the hand would expect to recover only protective sensation, that is, the ability to distinguish hot/cold or sharp/dull. Many other factors also affect nerve recovery. The use of autologous nerve grafting procedures that involve redirection of regenerative donor nerve fibers into the graft conduit has been successful in restoring target muscle function. Localized delivery of soluble neurotrophic factors may help promote the rate of axon regeneration observed within these graft conduits.
An expanding area of nerve regeneration research deals with the development of scaffolding and bio-conduits. Scaffolding developed from biomaterial would be useful in nerve regeneration if they successfully exhibit essentially the same role as the endoneurial tubes and Schwann cell do in guiding regrowing axons.
Neurapraxia is often treated and cured by non-operative means. The primary goals of treatment are to maintain the proper nutrition of the paralyzed muscles, prevent contraction by the antagonists of the paralyzed muscles, and to consistently keep the joints mobile. A splint is often used in cases of neurapraxia because it is able to maintain a relaxed position of the paralyzed muscle. The splint prevents the paralyzed muscle from being overstretched either by the force of gravity or by other non-paralyzed antagonists. During the recovery period of neurapraxia, it is essential that the joints constantly undergo passive movement in order to preserve proper mobility. If joints are kept mobile, the limb has the best possible chance of benefit from the return of nervous function. Non-steroidal anti-inflammatory medications can also help to reduce swelling at the injury site. In addition to these non-operative remedies, it is suggested that muscles affected by neurapraxia be kept warm at all times. Circulation in the limb is stimulated with the use of heat.
Once voluntary movement has returned to the muscle, recovery and treatment continues by the participation in active exercises. Physical Therapy and Occupational Therapy are common sources of treatment during these early stages of restoration of active movement. Almost all cases of neurapraxia can be completely treated by non-operative means.
People who suffer from neurotmesis often face a poor prognosis. They will more than likely never regain full functionality of the affected nerve, but surgical techniques do give people a better chance at regaining some function. Current research is focused on new ways to regenerate nerves and advance surgical techniques.
Treatment is directed at the pathology causing the paralysis. If it is because of trauma such as a gunshot or knife wound, there may be other life-threatening conditions such as bleeding or major organ damage which should be dealt with on an emergent basis. If the syndrome is caused by a spinal fracture, this should be identified and treated appropriately. Although steroids may be used to decrease cord swelling and inflammation, the usual therapy for spinal cord injury is expectant.
Signals from the sciatic nerve and it branches can be blocked, in order to interrupted transmission of pain signal from the innervation area, by performing a regional nerve blockade called a sciatic nerve block.
TCAs include imipramine, amitriptyline, desipramine, and nortriptyline. They are generally regarded as first or second-line treatment for DPN. Of the TCAs, imipramine has been the best studied. These medications are effective at decreasing painful symptoms but suffer from multiple side effects that are dose-dependent. One notable side effect is cardiac toxicity, which can lead to fatal abnormal heart rhythms. Additional common side effects include dry mouth, difficulty sleeping, and sedation. At low dosages used for neuropathy, toxicity is rare, but if symptoms warrant higher doses, complications are more common. Among the TCAs, amitriptyline is most widely used for this condition, but desipramine and nortriptyline have fewer side effects.
Cubital tunnel syndrome may be prevented or reduced by maintaining good posture and proper use of the elbow and arms, such as wearing an arm splint while sleeping to maintain the arm is in a straight position instead of keeping the elbow tightly bent. A recent example of this is popularization of the concept of cell phone elbow.
There are many treatments to facilitate the process of recovery in people who have brachial plexus injuries. Improvements occur slowly and the rehabilitation process can take up to many years. Many factors should be considered when estimating recovery time, such as initial diagnosis of the injury, severity of the injury, and type of treatments used. Some forms of treatment include nerve grafts, medication, surgical decompression, nerve transfer, physical therapy, and occupational therapy.
Typical opioid medications, such as oxycodone, appear to be no more effective than placebo. In contrast, low-quality evidence supports a moderate benefit from the use of atypical opioids (e.g., tramadol and tapentadol), which also have SNRI properties. Opioid medications are recommended as second or third-line treatment for DPN.
Depending on the severity of the lesion, physicians may recommend either conservative treatment or surgery. The first step is simply to rest and modify daily activities that aggravate the symptoms. Patients may be prescribed anti-inflammatory drugs, Physical or Occupational therapy, splints for the elbow and wrists, and corticosteroid injections as well. This is the most common treatment for CTS. Especially involving compression at the wrist, such as in CTS, it is possible to recover without treatment. Physical therapy can help build muscle strength and braces or splints help recover. In pronator teres syndrome, specifically, immobilization of the elbow and mobility exercise within a pain-free range are initially prescribed. However, if the patient is not relieved of symptoms after a usual 2 to 3 month refractory period, then decompression surgery may be required. Surgery involves excising the tissue or removing parts of the bone compressing the nerve.
Many tendon transfers have been shown to restore opposition to the thumb and provide thumb and finger flexion. In order to have optimal results the individual needs to follow the following principles of tendon transfer: normal tissue equilibrium, movable joints, and a scar-free bed. If these requirements are met then certain factors need to be considered such as matching up the lost muscle mass, fiber length, and cross-sectional area and then pick out muscle-tendon units of similar size, strength, and potential excursion.
For patients with low median nerve palsy, it has been shown that the flexor digitorum superficialis of the long and ring fingers or the wrist extensors best approximate the force and motion that is required to restore full thumb opposition and strength. This type of transfer is the preferred method for median nerve palsy when both strength and motion are required. In situations when only thumb mobility is desired, the extensor indicis proprius is an ideal transfer.
For high median nerve palsy, the brachioradialis or the extensor carpi radialis longus transfer is more appropriate to restore lost thumb flexion and side-to-side transfer of the flexor digitorum profundus of the index finger are generally sufficient. To restore independent flexion of the index finger could be performed by using the pronator teres or extensor carpi radialis ulnaris tendon muscle units. All of the mentioned transfers are generally quite successful because they combine a proper direction of action, pulley location, and tendon insertion.
According to medical professionals with the Cleveland Clinic, once an athlete suffers from an episode of cervical spinal cord, team physician or athletic trainer first stabilize the head and neck followed by a thorough neurologic inspection. If the injury is deemed severe, injured parties should be taken to a hospital for evaluation. Athletes that suffer from severe episodes of neurapraxia are urged to consult orthopaedic or spinal medical specialists. In mild cases of neurapraxia, the athlete is able to remove themselves from the field of play. However, the athlete is still advised to seek medical consultation.
Treatment for brachial plexus injuries includes orthosis/splinting, occupational or physical therapy and, in some cases, surgery. Some brachial plexus injuries may heal without treatment. Many infants improve or recover within 6 months, but those that do not have a very poor outlook and will need further surgery to try to compensate for the nerve deficits. The ability to bend the elbow (biceps function) by the third month of life is considered an indicator of probable recovery, with additional upward movement of the wrist, as well as straightening of thumb and fingers an even stronger indicator of excellent spontaneous improvement. Gentle range of motion exercises performed by parents, accompanied by repeated examinations by a physician, may be all that is necessary for patients with strong indicators of recovery.
The exercises mentioned above can be done to help rehabilitate from mild cases of the injury. However, in more serious brachial plexus injuries surgical interventions can be used. Function can be restored by nerve repairs, nerve replacements, and surgery to remove tumors causing the injury. Another crucial factor to note is that psychological problems can hinder the rehabilitation process due to a lack of motivation from the patient. On top of promoting a lifetime process of physical healing, it is important to not overlook the psychological well-being of a patient. This is due to the possibility of depression or complications with head injuries.
In high median nerve palsy patients, recovery time varies from as early as four months to 2.5 years. Initially, patients are immobilized in a neutral position of the forearm and elbow flexed at 90° in order to prevent further injury. Additionally, gentle exercises and soft tissue massage are applied. The next goal is strengthening and flexibility, usually involving wrist extension and flexion; however, it is important not to overuse the muscles in order to prevent re-injury. If surgery is required, post operative therapy initially involves decreasing pain and sensitivity to the incision area. Adequate grip and elbow strength must be achieved before returning to pre-operative activity.
The treatment of spasticity ranges from physical activity to medication. Physical activity includes stretching, aerobic exercises and relaxation techniques. Currently, there is little understanding as to why these physical activities aid in relieving spasticity. Medical treatments include baclofen, diazepam and dantrolene which is a muscle-relaxant. Dantrolene has many side effects and as such, it is usually not the first choice in treatment of spasticity. The side effects include dizziness, nausea and weakness.
Bernese periacetabular osteotomy resulted in major nerve deficits in the sciatic or femoral nerves in 2.1% of 1760 patients, of whom approximately half experienced complete recovery within a mean of 5.5 months.
Sciatic nerve exploration can be done by endoscopy in a minimally invasive procedure to assess lesions of the nerve. Endoscopic treatment for sciatic nerve entrapment has been investigated in deep gluteal syndrome; "Patients were treated with sciatic nerve decompression by resection of fibrovascular scar bands, piriformis tendon release, obturator internus, or quadratus femoris or by hamstring tendon scarring."
Fatigue is a common symptom and affects the daily life of individuals with MS. Changes in lifestyle are usually recommended to reduce fatigue. These include taking frequent naps and implementing exercise. MS patients who smoke are also advised to stop. Pharmacological treatment include anti-depressants and caffeine. Aspirin has also been experimented with and from clinical trial data, MS patients preferred using aspirin as compared to the placebo in the test. One hypothesis is that aspirin has an effect on the hypothalamus and can affect the perception of fatigue through altering the release of neurotransmitters and the autonomic responses.
Splinting, non-steroidal anti inflammatory drugs (NSAIDs), and corticosteroid injections are regarded as conservative first-line treatments for stenosing tenosynovitis. However, NSAIDs have been found to be ineffective as a monotherapy. Early treatment of trigger thumb has been associated with better treatment outcomes. Surgical treatment of trigger thumb can be complicated by injury to the digital nerves, scarring, tenderness, or a contracture of the joint. A significantly higher rate of symptom improvement has been observed when surgical management is paired with corticosteroid injections when compared to corticosteroid injections alone.
Occupational therapy is based on relieving the symptoms and reducing the inflammation. Overall cure rate, for dutifully applied non-operative treatment, is over 95% [citation needed]. Several modalities of treatment exists, depending on the chronicity and severity of the condition.
- Modification of hand activities
- Exercise & stretching
- Local heat
- Extension splinting during sleep (custom metacarpophalangeal joint (MCP joint) blocking splint, which has reported better patient's symptomatic relief and functionality and a distal interphalangeal (DIP) joint blocking splint)
Treatment consists of injection of methylprednisolone often combined with anesthetic (lidocaine) at the site of maximal inflammation or tenderness. The infiltration of the affected site can be performed blinded or sonographically guided, and often needs to be repeated 2 or three times to achieve remission. An irreducibly locked trigger, often associated with a flexion contracture of the PIP joint, should not be treated by injections.
- Transection of the fibrous annular pulley of the sheath
For symptoms that have persisted or recurred for more than 6 months and/or have been unresponsive to conservative treatment, surgical release of the pulley may be indicated. The main surgical approaches are percutaneous release and open release. The percutaneous approach, is preferred in some centers due to its reported shorter time of recuperation of motor function, less complications, and less painful. Complication of the surgical management include, persistent trigger finger, bowstringing, digital nerve injury, and continued triggering.
Of note, diabetes seems to be a poor prognostic indicator for nonoperative treatment and may develop stiffness after surgical release.