Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of treatment for short-chain acyl-CoA dehydrogenase deficiency, some individuals may not need treatment, while others might follow administration of:
- Riboflavin
- Dextrose
- Anticonvulsants
The primary treatment method for fatty-acid metabolism disorders is dietary modification. It is essential that the blood-glucose levels remain at adequate levels to prevent the body from moving fat to the liver for energy. This involves snacking on low-fat, high-carbohydrate nutrients every 2–6 hours. However, some adults and children can sleep for 8–10 hours through the night without snacking.
Carnitor - an L-carnitine supplement that has shown to improve the body's metabolism in individuals with low L-carnitine levels. It is only useful for Specific fatty-acid metabolism disease.
Direct treatment that stimulates the pyruvate dehydrogenase complex (PDC), provides alternative fuels, and prevents acute worsening of the syndrome. However, some correction of acidosis does not reverse all the symptoms. CNS damage is common and limits a full recovery. Ketogenic diets, with high fat and low carbohydrate intake have been used to control or minimize lactic acidosis and anecdotal evidence shows successful control of the disease, slowing progress and often showing rapid improvement. No study has yet been published demonstrating the effectiveness of the ketogenic diet for treatment of PDCD.
There is some evidence that dichloroacetate reduces the inhibitory phosphorylation of pyruvate dehydrogenase complex and thereby activates any residual functioning complex. Resolution of lactic acidosis is observed in patients with E1 alpha enzyme subunit mutations that reduce enzyme stability. However, treatment with dichloroacetate does not improve neurological damage. Oral citrate is often used to treat acidosis.
Copper deficiency is a very rare disease and is often misdiagnosed several times by physicians before concluding the deficiency of copper through differential diagnosis (copper serum test and bone marrow biopsy are usually conclusive in diagnosing copper deficiency). On average, patients are diagnosed with copper deficiency around 1.1 years after their first symptoms are reported to a physician.
Copper deficiency can be treated with either oral copper supplementation or intravenous copper. If zinc intoxication is present, discontinuation of zinc may be sufficient to restore copper levels back to normal, but this usually is a very slow process. People who suffer from zinc intoxication will usually have to take copper supplements in addition to ceasing zinc consumption. Hematological manifestations are often quickly restored back to normal. The progression of the neurological symptoms will be stopped by appropriate treatment, but often with residual neurological disability.
Treatment involves a diet which includes an adequate amount of riboflavin containing foods. Multi-vitamin and mineral dietary supplements often contain 100% of the Daily Value (1.3 mg) for riboflavin, and can be used by persons concerned about an inadequate diet. Over-the-counter dietary supplements are available in the United States with doses as high as 100 mg, but there is no evidence that these high doses have any additional benefit for healthy people.
In 2009, Monash Children's Hospital at Southern Health in Melbourne, Australia reported that a patient known as Baby Z became the first person to be successfully treated for molybdenum cofactor deficiency type A. The patient was treated with cPMP, a precursor of the molybdenum cofactor. Baby Z will require daily injections of cyclic pyranopterin monophosphate (cPMP) for the rest of her life.
Since phytanic acid is not produced in the human body, individuals with Refsum disease are commonly placed on a phytanic acid-restricted diet and avoid the consumption of fats from ruminant animals and certain fish, such as tuna, cod, and haddock. Grass feeding animals and their milk are also avoided. Recent research has shown that CYP4 isoform enzymes could help reduce the over-accumulation of phytanic acid "in vivo". Plasmapheresis is another medical intervention used to treat patients. This involves the filtering of blood to ensure there is no accumulation of phytanic acid.
There is no cure for Menkes disease. Early treatment with injections of copper supplements (in the form of acetate salts) may be of some slight benefit. Among 12 newborns who were diagnosed with MNK, 92% were alive at age 4.6. Other treatment is symptomatic and supportive. Treatments to help relieve some of the symptoms includes, pain medication, anti-seizure medication, feeding tube when necessary, and physical and occupational therapy.
As a chemical compound, riboflavin is a yellow-orange solid substance with poor solubility in water compared to other B vitamins. Visually, it imparts color to vitamin supplements (and bright yellow color to the urine of persons taking a lot of it).
There is no specific treatment beyond maintaining a high fluid intake and avoiding foods that are high in purine.
The treatment of 2-Hydroxyglutaric aciduria is based on seizure control, the prognosis depends on how severe the condition is.
Courses of treatment for children with is dependent upon the severity of their case. Children with OHS often receive physical and occupational therapy. They may require a feeding tube to supplement nourishment if they are not growing enough. In an attempt to improve the neurological condition (seizures) copper histidine or copper chloride injections can be given early in the child’s life.
However, copper histidine injections have been shown ineffective in studies of copper metabolic-connective tissue disorders such as OHS.
In ruminant animals, the gut fermentation of consumed plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. Although humans cannot derive significant amounts of phytanic acid from the consumption of chlorophyll present in plant materials, it has been proposed that the great apes (bonobos, chimpanzees, gorillas, and orangutans) can derive significant amounts of phytanic acid from the hindgut fermentation of plant materials.
Diagnosis of cortisone reductase deficiency is done through analysis of cortisol to cortisone metabolite levels in blood samples. As of now, there is no treatment for cortisone reductase deficiency. Shots of cortisol are quickly metabolised into cortisone by the dysregulated 11β-HSD1 enzyme; however, symptoms can be treated. Treatment of hyperandroginism can be done through prescription of antiandrogens. They do so by inhibiting the release of gonadotropin and luteinizing hormone, both hormones in the pituitary, responsible for the production of testosterone.
Liver transplant has been used in the treatment of this condition.
There is no cure for HCP caused by the deficient activity of coproporphyrinogen oxidase. Treatment of the acute symptoms of HCP is the same as for other acute porphyrias. Intravenous hemin (as heme arginate or hematin) is the recommended therapy for acute attacks. Acute attacks can be severe enough to cause death if not treated quickly and correctly. Hospitalization is typically required for administration of hemin, and appropriate drug selection is key to avoid exacerbating symptoms with drugs that interact poorly with porphyrias. Proper drug selection is most difficult when it comes to treatment of the seizures that can accompany HCP, as most anti-seizure medications can make the symptoms worse. Gabapentin and levetiracetam are two anti-seizure drugs that are thought to be safe.
In patients where management of symptoms is difficult even with hemin, liver transplant is an option before the symptoms have progressed to advanced paralysis. Combined liver and kidney transplants are sometimes undertaken in patients with renal failure.
Long term treatment of acute porphyrias is centered on the avoidance of acute attacks by eliminating precipitating factors, such as drugs, dietary changes, and infections. Females often have attacks coincident with their menstrual cycle, which can be managed effectively with hormonal birth control. Because of the reduced penetrance of HCP, family members of a patient may carry the same mutation without ever presenting with symptoms. Molecular analysis of "CPOX" is the best way to identify these patients, as they will not express a biochemical phenotype on laboratory testing unless they are symptomatic. Identification of asymptomatic patients allows them to adjust their lifestyle to avoid common triggering factors.
If a metabolic crisis is not treated, a child with VLCADD can develop: breathing problems, seizures, coma, sometimes leading to death.
Adverse effects have been documented from vitamin B supplements, but never from food sources. Damage to the dorsal root ganglia is documented in human cases of overdose of pyridoxine. Although it is a water-soluble vitamin and is excreted in the urine, doses of pyridoxine in excess of the dietary upper limit (UL) over long periods cause painful and ultimately irreversible neurological problems. The primary symptoms are pain and numbness of the extremities. In severe cases, motor neuropathy may occur with "slowing of motor conduction velocities, prolonged F wave latencies, and prolonged sensory latencies in both lower extremities", causing difficulty in walking. Sensory neuropathy typically develops at doses of pyridoxine in excess of 1,000 mg per day, but adverse effects can occur with much less, so doses over 200 mg are not considered safe. Symptoms among women taking lower doses have been reported.
Existing authorizations and valuations vary considerably worldwide. As noted, the U.S. Institute of Medicine set an adult UL at 100 mg/day. The European Community Scientific Committee on Food defined intakes of 50 mg of vitamin B per day as harmful and established a UL of 25 mg/day. The nutrient reference values in Australia and New Zealand recommend an upper limit of 50 mg/day in adults. "The same figure was set for pregnancy and lactation as there is no evidence of teratogenicity at this level. The UL was set based on metabolic body size and growth considerations for all other ages and life stages except infancy. It was not possible to set a UL for infants, so intake is recommended in the form of food, milk or formula." The ULs were set using results of studies involving long-term oral administration of pyridoxine at doses of less than 1 g/day. "A no-observed-adverse-effect level (NOAEL) of 200 mg/day was identified from the studies of Bernstein & Lobitz (1988) and Del Tredici "et al" (1985). These studies involved subjects who had generally been on the supplements for five to six months or less. The study of Dalton and Dalton (1987), however, suggested the symptoms might take substantially longer than this to appear. In this latter retrospective survey, subjects who reported symptoms had been on supplements for 2.9 years, on average. Those reporting no symptoms had taken supplements for 1.9 years."
Bariatric surgery is a common cause of copper deficiency. Bariatric surgery, such as gastric bypass surgery, is often used for weight control of the morbidly obese. The disruption of the intestines and stomach from the surgery can cause absorption difficulties not only as regards copper, but also for iron and vitamin B12 and many other nutrients. The symptoms of copper deficiency myelopathy may take a long time to develop, sometimes decades before the myelopathy symptoms manifest.
Methemoglobinemia can be treated with supplemental oxygen and methylene blue 1% solution (10 mg/ml) 1 to 2 mg/kg administered intravenously slowly over five minutes. Although the response is usually rapid, the dose may be repeated in one hour if the level of methemoglobin is still high one hour after the initial infusion. Methylene Blue inhibits monoamine oxidase and serotonin toxicity can occur if taken with an SSRI (selective serotonin reuptake inhibitor) medicine.
Methylene blue restores the iron in hemoglobin to its normal (reduced) oxygen-carrying state. This is achieved by providing an artificial electron acceptor (such as methylene blue or flavin) for NADPH methemoglobin reductase (RBCs usually don't have one; the presence of methylene blue allows the enzyme to function at 5× normal levels). The NADPH is generated via the hexose monophosphate shunt.
Genetically induced chronic low-level methemoglobinemia may be treated with oral methylene blue daily. Also, vitamin C can occasionally reduce cyanosis associated with chronic methemoglobinemia but has no role in treatment of acute acquired methemoglobinemia. Diaphorase normally contributes only a small percentage of the red blood cell's reducing capacity, but can be pharmacologically activated by exogenous cofactors (such as methylene blue) to 5 times its normal level of activity.
Succinic acid has been studied, and shown effective for both Leighs disease, and MELAS syndrome. If the mutation is in succinate dehydrogenase then there is a build up of succinate, in which case succinic acid won't work so the treatment is with fumaric acid to replace the fumarate than can not be made from succinate. A high-fat, low-carbohydrate diet may be followed if a gene on the X chromosome is implicated in an individual's Leigh syndrome. Thiamine (vitamin B) may be given if a deficiency of pyruvate dehydrogenase is known or suspected. The symptoms of lactic acidosis are treated by supplementing the diet with sodium bicarbonate (baking soda) or sodium citrate, but these substances do not treat the cause of Leigh syndrome. Dichloroacetate may also be effective in treating Leigh syndrome-associated lactic acidosis; research is ongoing on this substance. Coenzyme Q10 supplements have been seen to improve symptoms in some cases.
Clinical trials of the drug EPI-743 for Leigh disease are ongoing.
In 2016, John Zhang and his team at New Hope Fertility Center in New York, USA, performed a spindle transfer mitochondrial donation technique on a mother in Mexico who was at risk of producing a baby with Leigh disease. A healthy boy was born on 6 April 2016. However, it is not yet certain if the technique is completely reliable and safe.
Molybdenum cofactor deficiency is a rare human disease in which the absence of molybdenum cofactor leads to accumulation of toxic levels of sulphite and neurological damage. Usually this leads to death within months of birth, due to the lack of active sulfite oxidase. Furthermore, a mutational block in molybdenum cofactor biosynthesis causes absence of enzyme activity of xanthine dehydrogenase/oxidase and aldehyde oxidase.
Babies with this disorder are usually healthy at birth. The signs and symptoms may not appear until later in infancy or childhood and can include poor feeding and growth (failure to thrive), a weakened and enlarged heart (dilated cardiomyopathy), seizures, and low numbers of red blood cells (anemia). Another feature of this disorder may be very low blood levels of carnitine (a natural substance that helps convert certain foods into energy).
Isobutyryl-CoA dehydrogenase deficiency may be worsened by long periods without food (fasting) or infections that increase the body's demand for energy. Some individuals with gene mutations that can cause isobutyryl-CoA dehydrogenase deficiency may never experience any signs and symptoms of the disorder.
Isobutyryl-coenzyme A dehydrogenase deficiency, commonly known as IBD deficiency, is a rare metabolic disorder in which the body is unable to process certain amino acids properly.
People with this disorder have inadequate levels of an enzyme that helps break down the amino acid valine, resulting in a buildup of valine in the urine, a symptom called valinuria.