Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Currently, the most common form of treatment for SLOS involves dietary cholesterol supplementation. Anecdotal reports indicate that this has some benefits; it may result in increased growth, lower irritability, improved sociability, less self-injurious behaviour, less tactile defensiveness, fewer infections, more muscle tone, less photosensitivity and fewer autistic behaviours. Cholesterol supplementation begins at a dose of 40–50 mg/kg/day, increasing as needed. It is administered either through consuming foods high in cholesterol (eggs, cream, liver), or as purified food grade cholesterol. Younger children and infants may require tube feeding. However, dietary cholesterol does not reduce the levels of 7DHC, cannot cross the blood–brain barrier, and does not appear to improve developmental outcomes. One empirical study found that cholesterol supplementation did not improve developmental delay, regardless of the age at which it began. This is likely because most developmental delays stem from malformations of the brain, which dietary cholesterol cannot ameliorate due to its inability to cross the blood–brain barrier.
Medical Care
- Treatment may be provided on an outpatient basis.
- Cataracts that do not regress or disappear with therapy may require hospitalization for surgical removal.
Surgical Care
- Cataracts may require surgical removal.
Consultations
- Biochemical geneticist
- Nutritionist
- Ophthalmologist
Diet
- Diet is the foundation of therapy. Elimination of lactose and galactose sources suffices for definitive therapy.
Activity
- No restriction is necessary.
(Roth MD, Karl S. 2009)
Treatments for Glycerol Kinase Deficiency are targeted to treat the symptoms because there are no permanent treatments for this disease. The main way to treat these symptoms is by using corticosteroids, glucose infusion, or mineralocorticoids. Corticosteroids are steroid hormones that are naturally produced in the adrenal glands. These hormones regulate stress responses, carbohydrate metabolism, blood electrolyte levels, as well as other uses. The mineralocorticoids, such as aldosterone control many electrolyte levels and allow the kidneys to retain sodium. Glucose infusion is coupled with insulin infusion to monitor blood glucose levels and keep them stable.
Due to the multitude of varying symptoms of this disease, there is no specific treatment that will cure this disease altogether. The symptoms can be treated with many different treatments and combinations of medicines to try to find the correct combination to offset the specific symptoms. Everyone with Glycerol Kinase Deficiency has varying degrees of symptoms and thereby requires different medicines to be used in combination to treat the symptoms; however, this disease is not curable and the symptoms can only be managed, not treated fully.
HMG-CoA reductase inhibitors have been examined as treatment for SLOS. Given that this catalyzes the rate-limiting step in cholesterol synthesis, inhibiting it would reduce the buildup of toxic metabolites such as 7DHC. Simvastatin is a known inhibitor of HMG-CoA reductase, and most importantly is able to cross the blood–brain barrier. It has been reported to decrease the levels of 7DHC, as well as increase the levels of cholesterol. The increased cholesterol levels are due to simvastatin's effect on the expression of different genes. Simvastatin increases the expression of "DHCR7", likely leading to increased activity of DHCR7. It has also been shown to increase the expression of other genes involved in cholesterol synthesis and uptake. However, these benefits are dependent on the amount of residual cholesterol synthesis. Because some individuals possess less severe mutations and demonstrate some amount of DCHR7 activity, these people benefit the most from simvastatin therapy as they still have a partially functioning enzyme. For individuals that show no residual DCHR7 activity, such as those homozygous for null alleles or mutations, simvastatin therapy may actually be toxic. This highlights the importance of identifying the specific genotype of the SLOS patient before administering treatment. It is still unknown if simvastatin will improve the behavioural or learning deficits in SLOS.
In terms of treatment for individuals with Nezelof syndrome, which was first characterized in 1964, includes the following(how effective bone marrow transplant is uncertain) :
- Antimicrobial therapy
- IV immunoglobulin
- Bone marrow transplantation
- Thymus transplantation
- Thymus factors
Other therapeutic interventions include:
- ethosuximide and other anticonvulsant drugs
- GHB receptor antagonist NCS-382
- GABA receptor modulators
- uridine
- acamprosate
- dopaminergic agents
- dextromethorphan
- glutamine
- antioxidants
- Lamotrigine
The GABA(B) receptor antagonist, SGS-742, is currently being tested as a potential therapeutic in an NIH phase II clinical trial (NCT02019667).
The GABA antagonist CGP-35348 (3-amino-propyl-(diethoxymethyl) phosphinic acid) has been used in Aldh5a1-/- mice with strong results. It has shown to reduce the frequency of absence seizures, though there have been some cases in which it worsened convulsive seizures.
Direct treatment that stimulates the pyruvate dehydrogenase complex (PDC), provides alternative fuels, and prevents acute worsening of the syndrome. However, some correction of acidosis does not reverse all the symptoms. CNS damage is common and limits a full recovery. Ketogenic diets, with high fat and low carbohydrate intake have been used to control or minimize lactic acidosis and anecdotal evidence shows successful control of the disease, slowing progress and often showing rapid improvement. No study has yet been published demonstrating the effectiveness of the ketogenic diet for treatment of PDCD.
There is some evidence that dichloroacetate reduces the inhibitory phosphorylation of pyruvate dehydrogenase complex and thereby activates any residual functioning complex. Resolution of lactic acidosis is observed in patients with E1 alpha enzyme subunit mutations that reduce enzyme stability. However, treatment with dichloroacetate does not improve neurological damage. Oral citrate is often used to treat acidosis.
Low-protein food is recommended for this disorder, which requires food products low in particular types of amino acids (e.g., methionine).
The treatment is some form of Vitamin E supplementation.
Aggressive vitamin E replacement therapy has been shown to either prevent, halt or improve visual abnormalities.
In adults, fibrates and statins have been prescribed to treat hyperglycerolemia by lowering blood glycerol levels. Fibrates are a class of drugs that are known as amphipathic carboxylic acids that are often used in combination with Statins. Fibrates work by lowering blood triglyceride concentrations. When combined with statins, the combination will lower LDL cholesterol, lower blood triglycerides and increase HDL cholesterol levels.
If hyperglycerolemia is found in a young child without any family history of this condition, then it may be difficult to know whether the young child has the symptomatic or benign form of the disorder. Common treatments include: a low-fat diet, IV glucose if necessary, monitor for insulin resistance and diabetes, evaluate for Duchenne muscular dystrophy, adrenal insufficiency & developmental delay.
The Genetic and Rare Diseases Information Center (GARD) does not list any treatments at this time.
No specific cure has been discovered for homocystinuria; however, many people are treated using high doses of vitamin B (also known as pyridoxine). Slightly less than 50% respond to this treatment and need to take supplemental vitamin B for the rest of their lives. Those who do not respond require a Low-sulfur diet (especially monitoring methionine), and most will need treatment with trimethylglycine. A normal dose of folic acid supplement and occasionally adding cysteine to the diet can be helpful, as glutathione is synthesized from cysteine (so adding cysteine can be important to reduce oxidative stress).
Betaine (N,N,N-trimethylglycine) is used to reduce concentrations of homocysteine by promoting the conversion of homocysteine back to methionine, i.e., increasing flux through the re-methylation pathway independent of folate derivatives (which is mainly active in the liver and in the kidneys).The re-formed methionine is then gradually removed by incorporation into body protein. The methionine that is not converted into protein is converted to S-adenosyl-methionine which goes on to form homocysteine again. Betaine is, therefore, only effective if the quantity of methionine to be removed is small. Hence treatment includes both betaine and a diet low in methionine. In classical homocystinuria (CBS, or cystathione beta synthase deficiency), the plasma methionine level usually increases above the normal range of 30 micromoles/L and the concentrations should be monitored as potentially toxic levels (more than 400 micromoles/L) may be reached.
Diagnosis of cortisone reductase deficiency is done through analysis of cortisol to cortisone metabolite levels in blood samples. As of now, there is no treatment for cortisone reductase deficiency. Shots of cortisol are quickly metabolised into cortisone by the dysregulated 11β-HSD1 enzyme; however, symptoms can be treated. Treatment of hyperandroginism can be done through prescription of antiandrogens. They do so by inhibiting the release of gonadotropin and luteinizing hormone, both hormones in the pituitary, responsible for the production of testosterone.
NARP syndrome is not curable. Symptomatic relief is targeted. Antioxidants play a role in improving the oxidative phosphorylation that is otherwise impaired.
The only treatment for classic galactosemia is eliminating lactose and galactose from the diet. Even with an early diagnosis and a restricted diet, however, some individuals with galactosemia experience long-term complications such as speech difficulties, learning disabilities, neurological impairment (e.g. tremors, etc.), and ovarian failure. Symptoms have not been associated with Duarte galactosemia, and many individuals with Duarte galactosemia do not need to restrict their diet at all. However, research corroborates a previously overlooked theory that Duarte galactosemia may lead to language developmental issues in children with no clinical symptoms. Infants with classic galactosemia cannot be breast-fed due to lactose in human breast milk and are usually fed a soy-based formula.
Galactosemia is sometimes confused with lactose intolerance, but galactosemia is a more serious condition. Lactose intolerant individuals have an acquired or inherited shortage of the enzyme lactase, and experience abdominal pains after ingesting dairy products, but no long-term effects. In contrast, a galactosemic individual who consumes galactose can cause permanent damage to their bodies.
Long term complication of galactosemia includes:
- Speech deficits
- Ataxia
- Dysmetria
- Diminished bone density
- Premature ovarian failure
- Cataract
Treatment for LNS is symptomatic. Gout can be treated with allopurinol to control excessive amounts of uric acid. Kidney stones may be treated with lithotripsy, a technique for breaking up kidney stones using shock waves or laser beams. There is no standard treatment for the neurological symptoms of LNS. Some may be relieved with the drugs carbidopa/levodopa, diazepam, phenobarbital, or haloperidol.
It is essential that the overproduction of uric acid be controlled in order to reduce the risk of nephropathy, nephrolithiasis, and gouty arthritis. The drug allopurinol is utilized to stop the conversion of oxypurines into uric acid, and prevent the development of subsequent arthritic tophi (produced after having chronic gout), kidney stones, and nephropathy, the resulting kidney disease. Allopurinol is taken orally, at a typical dose of 3–20 mg/kg per day. The dose is then adjusted to bring the uric acid level down into the normal range (<3 mg/dL). Most affected individuals can be treated with allopurinol all through life.
No medication is effective in controlling the extrapyramidal motor features of the disease. Spasticity, however, can be reduced by the administration of baclofen or benzodiazepines.
There has previously been no effective method of treatment for the neurobehavioral aspects of the disease. Even children treated from birth with allopurinol develop behavioral and neurologic problems, despite never having had high serum concentrations of uric acid. Self-injurious and other behaviors are best managed by a combination of medical, physical, and behavioral interventions. The self-mutilation is often reduced by using restraints. Sixty percent of individuals have their teeth extracted in order to avoid self-injury, which families have found to be an effective management technique. Because stress increases self-injury, behavioral management through aversive techniques (which would normally reduce self-injury) actually increases self-injury in individuals with LNS. Nearly all affected individuals need restraints to prevent self-injury, and are restrained more than 75% of the time. This is often at their own request, and occasionally involves restraints that would appear to be ineffective, as they do not physically prevent biting. Families report that affected individuals are more at ease when restrained.
The Matheny Medical and Educational Center in Peapack, NJ, has nine Lesch–Nyhan syndrome patients, believed to be the largest concentration of LNS cases in one location, and is recognized as the leading source of information on care issues.
Treatment for LNS patients, according to Gary E. Eddey, MD, medical director, should include: 1) Judicious use of protective devices; 2) Utilization of a behavioral technique commonly referred to as 'selective ignoring' with redirection of activities; and 3) Occasional use of medications.
An article in the August 13, 2007 issue of "The New Yorker" magazine, written by Richard Preston, discusses "deep-brain stimulation" as a possible treatment. It has been performed on a few patients with Lesch–Nyhan syndrome by Dr. Takaomi Taira in Tokyo and by a group in France led by Dr. Philippe Coubes. Some patients experienced a decrease in spastic self-injurious symptoms. The technique was developed for treating people with Parkinson's disease, according to Preston, over 20 years ago. The treatment involves invasive surgery to place wires that carry a continuous electric current into a specific region of the brain.
An encouraging advance in the treatment of the neurobehavioural aspects of LNS was the publication in the October, 2006 issue of "Journal of Inherited Metabolic Disease" of an experimental therapy giving oral S-adenosyl-methionine (SAMe).
This drug is a nucleotide precursor that provides a readily absorbed purine, which is known to be transported across the blood–brain barrier. Administration of SAMe to adult LNS patients was shown to provide improvement in neurobehavioural and other neurological attributes. The drug is available without prescription and has been widely used for depression, but its use for treating LNS should be undertaken only under strict medical supervision, as side effects are known.
SAMe has also been used recently to treat another purine nucleotide disease, "Art's syndrome" (which is a PRPP disorder in common with LNS), with encouraging results.
Thus SAMe may be useful for treating purine nucleotide diseases, which include LNS.
Currently there is no curative treatment for KSS. Because it is a rare condition, there are only case reports of treatments with very little data to support their effectiveness. Several promising discoveries have been reported which may support the discovery of new treatments with further research. Satellite cells are responsible for muscle fiber regeneration. It has been noted that mutant mtDNA is rare or undetectable in satellite cells cultured from patients with KSS. Shoubridge et al. (1997) asked the question whether wildtype mtDNA could be restored to muscle tissue by encouraging muscle regeneration. In the forementioned study, regenerating muscle fibers were sampled at the original biopsy site, and it was found that they were essentially homoplasmic for wildtype mtDNA. Perhaps with future techniques of promoting muscle cell regeneration and satellite cell proliferation, functional status in KSS patients could be greatly improved.
One study described a patient with KSS who had reduced serum levels of coenzyme Q10. Administration of 60–120 mg of Coenzyme Q10 for 3 months resulted in normalization of lactate and pyruvate levels, improvement of previously diagnosed first degree AV block, and improvement of ocular movements.
A screening ECG is recommended in all patients presenting with CPEO. In KSS, implantation of pacemaker is advised following the development of significant conduction disease, even in asymptomatic patients.
Screening for endocrinologic disorders should be performed, including measuring serum glucose levels, thyroid function tests, calcium and magnesium levels, and serum electrolyte levels. Hyperaldosteronism is seen in 3% of KSS patients.
The differential diagnosis for this condition consists of acquired immune deficiency syndrome and severe combined immunodeficiency syndrome
The goal for treatment of GSD type 0 is to avoid hypoglycemia. This is accomplished by avoiding fasting by eating every 3-4 hours during the day. At night, uncooked corn starch can be given because it is a complex glucose polymer. This will be acted on slowly by pancreatic amylase and glucose will be absorbed over a 6 hour period.
Although the etiology is unconfirmed, transient hyperammonemia is known to be caused by increased levels of ammonia in the blood stream, as well as a failure of the urea cycle to convert enough of the ammonia into urea. Since transamination of proteins is a leading producer of ammonia, protein restriction may be recommended as a therapy to reduce the symptoms of the episode. THAN can also be treated by avoiding amino acids in TPN or total parenteral nutrition or by giving a high caloric diet to limit catabolism of the tissues and therefore to minimize the breakdown of endogenous protein. The most common treatments are dialysis (both peritoneal and hemodialysis), sodium benzoate, and arginine. Sodium Benzoate combines with glycine to be excreted in the form of hippuric acid. The goal of these treatments is to convert nitrogen to a compound that can be excreted more easily.
Withdrawal of the contaminated cooking oil is the most important initial step. Bed rest with leg elevation and a protein-rich diet are useful. Supplements of calcium, antioxidants (vitamin C and E), and thiamine and other B vitamins are commonly used. Corticosteroids and antihistaminics such as promethazine have been advocated by some investigators, but demonstrated efficacy is lacking. Diuretics are used universally but caution must be exercised not to deplete the intravascular volume unless features of frank congestive cardiac failure are present, as oedema is mainly due to increased capillary permeability. Cardiac failure is managed by bed rest, salt restriction, digitalis and diuretics. Pneumonia is treated with appropriate antibiotics. Renal failure may need dialysis therapy and complete clinical recovery is seen. Glaucoma may need operative intervention, but generally responds to medical management.
The primary treatment for type 1 tyrosinemia is nitisinone (Orfadin) and restriction of tyrosine in the diet. Nitisinone inhibits the conversion of 4-OH phenylpyruvate to homogentisic acid by 4-Hydroxyphenylpyruvate dioxygenase, the second step in tyrosine degradation. By inhibiting this enzyme, the accumulation of the fumarylacetoacetate is prevented. Previously, liver transplantation was the primary treatment option and is still used in patients in whom nitisinone fails.
The severity and prognosis vary with the type of mutation involved.
The mortality rate for THAN is relatively high unless immediate treatment is obtained. The duration of hyperammonemia is directly correlated to morbidity as well as the associated neurological conditions. After the first hyperammonemic episode, there is no increased risk for future hyperammonemic episodes, and normal protein consumption can be continued.
Idebenone is a short-chain benzoquinone that interacts with the mitochondrial electron transport chain to enhance cellular respiration. When used in individuals with LHON, it is believed to allow electrons to bypass the dysfunctional complex I. Successful treatment using idebenone was initially reported in a small number of patients.
Two large-scale studies have demonstrated the benefits of idebenone. The Rescue of Hereditary Optic Disease Outpatient Study (RHODOS) evaluated the effects of idebenone in 85 patients with LHON who had lost vision within the prior five years. In this study, the group taking idebenone 900 mg per day for 24 weeks showed a slight improvement in visual acuity compared to the placebo group, though this difference was not statistically significant. Importantly, however, patients taking idebenone were protected from further vision loss, whereas the placebo group had a steady decline in visual acuity. Further, individuals taking idebenone demonstrated preservation of color vision and persistence of the effects of idebenone 30 months after discontinuing therapy. A retrospective analysis of 103 LHON patients by Carelli et al. builds upon these results. This study highlighted that 44 subjects who were treated with idebenone within one year of onset of vision loss had better outcomes, and, further, that these improvements with idebenone persisted for years.
Idebenone, combined with avoidance of smoke and limitation of alcohol intake, is the preferred standard treatment protocol for patients affected by LHON. Idebenone doses are prescribed to be taken spaced out throughout the day, rather than all at one time. For example, to achieve a dose of 900 mg per day, patients take 300 mg three times daily with meals. Idebenone is fat soluble, and may be taken with a moderate amount of dietary fat in each meal to promote absorption. It is recommended that patients on idebenone also take vitamin C 500 mg daily to keep idebenone in its reduced form, as it is most active in this state.