Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no causative / curative therapy. Symptomatic medical treatments are focussing on symptoms caused by orthopaedic, dental or cardiac problems. Regarding perioperative / anesthesiological management, recommendations for medical professionals are published at OrphanAnesthesia.
Management of rhizomelic chondrodysplasia punctate can include physical therapy, additionally orthopedic procedures improved function sometimes in affected people. However the prognosis is poor in this condition.
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
There is no known cure. In selected patients orthopaedic surgery may be helpful to try to gain some functionality of severely impaired joints.
If a contracture is less than 30 degrees, it may not interfere with normal functioning. The common treatment is splinting and occupational therapy. Surgery is the last option for most cases as the result may not be satisfactory.
Like treatment options, the prognosis is dependent on the severity of the symptoms. Despite the various symptoms and limitations, most individuals have normal intelligence and can lead a normal life.
Because kniest dysplasia can affect various body systems, treatments can vary between non-surgical and surgical treatment. Patients will be monitored over time, and treatments will be provided based on the complications that arise.
Although there is no cure for 13q deletion syndrome, symptoms can be managed, usually with the involvement of a neurologist, rehabilitation physician, occupational therapist, physiotherapist, psychotherapist, nutritionist, special education professional, and/or speech therapist. If the affected child's growth is particularly slow, growth hormone treatment can be used to augment growth. Plastic surgeries can repair cleft palates, and surgical repair or monitoring by a pediatric cardiologist can manage cardiac defects. Some skeletal, neurological, genitourinary, gastrointestinal, and ophthalmic abnormalities can be definitively treated with surgery. Endocrine abnormalities can often be managed medically. Special educators, speech and occupational therapists, and physiotherapists can help a child develop skills in and out of school.
The disorder is progressive, with the ultimate severity of symptoms often depending on age of onset. In severe cases amputation has been performed when conservative measures such as physical therapy and regional anesthetics have been ineffective.
Genetic mutations of most forms of dwarfism caused by bone dysplasia cannot be altered yet, so therapeutic interventions are typically aimed at preventing or reducing pain or physical disability, increasing adult height, or mitigating psychosocial stresses and enhancing social adaptation.
Forms of dwarfism associated with the endocrine system may be treated using hormonal therapy. If the cause is prepubescent hyposecretion of growth hormone, supplemental growth hormone may correct the abnormality. If the receptor for growth hormone is itself affected, the condition may prove harder to treat. Hypothyroidism is another possible cause of dwarfism that can be treated through hormonal therapy. Injections of thyroid hormone can mitigate the effects of the condition, but lack of proportion may be permanent.
Pain and disability may be ameliorated by physical therapy, braces or other orthotic devices, or by surgical procedures. The only simple interventions that increase perceived adult height are dress enhancements, such as shoe lifts or hairstyle. Growth hormone is rarely used for shortness caused by bone dysplasias, since the height benefit is typically small (less than ) and the cost high. The most effective means of increasing adult height by several inches is distraction osteogenesis, though availability is limited and the cost is high in terms of money, discomfort, and disruption of life. Most people with dwarfism do not choose this option, and it remains controversial. For other types of dwarfism, surgical treatment is not possible.
The complete or partial absence of the pectoralis muscle is the malformation that defines Poland Syndrome. It can be treated by inserting a custom implant designed by CAD (computer aided design). A 3D reconstruction of the patient's chest is performed from a medical scanner to design a virtual implant perfectly adapted to the anatomy of each one. The implant is made of medical silicone unbreakable rubber. This treatment is purely cosmetic and does not make up for the patient's imbalanced upper body strength.
The Poland syndrome malformations being morphological, correction by custom implant is a first-line treatment. This technique allows a wide variety of patients to be treated with good outcomes. Poland Syndrome can be associated with bones, subcutaneous and mammary atrophy: if the first, as for pectus excavatum, is successfully corrected by a custom implant, the others can require surgical intervention such as lipofilling or silicone breast implant, in a second operation.
The surgery takes place under general anaesthesia and lasts less than 1 hour. The surgeon prepares the locus to the size of the implant after performing a 8-cm axillary incision and inserts the implant beneath the skin. The closure is made in 2 planes.
The implant will replace the pectoralis major muscle, thus enabling the thorax to be symmetrical and, in women, the breast as well. If necessary, especially in the case of women, a second operation will complement the result by the implantation of a breast implant and / or lipofilling.
Lipomodelling is progressively used in the correction of breast and chest wall deformities. In Poland syndrome, this technique appears to be a major advance that will probably revolutionize the treatment of severe cases. This is mainly due to its ability to achieve previously unachievable quality of reconstruction with minimal scaring.
The fibrocartilaginous effects of fibrochondrogenesis on chondrocytes has shown potential as a means to produce therapeutic cellular biomaterials via tissue engineering and manipulation of stem cells, specifically human embryonic stem cells.
Utilization of these cells as curative cartilage replacement materials on the cellular level has shown promise, with beneficial applications including the repair and healing of damaged knee menisci and synovial joints; temporomandibular joints, and vertebra.
There is currently no cure for pseudoachondroplasia. However, management of the various health problems that result from the disorder includes medications such as analgesics (painkillers) for joint discomfort, osteotomy for lower limb deformities, and the surgical treatment of scoliosis. Prevention of some related health problems includes physical therapy to preserve joint flexibility and regular examinations to detect degenerative joint disease and neurological manifestations (particularly spinal cord compression). Additionally, healthcare providers recommend treatment for psychosocial issues related to short stature and other physical deformities for both affected individuals and their families (OMIM 2008).
People with Pyle disease are often asymptomatic. Dental anomalies may require orthodontic interventions. Skeletal anomalies may require orthopedic surgery.
Medical management of children with Trisomy 13 is planned on a case-by-case basis and depends on the individual circumstances of the patient. Treatment of Patau syndrome focuses on the particular physical problems with which each child is born. Many infants have difficulty surviving the first few days or weeks due to severe neurological problems or complex heart defects. Surgery may be necessary to repair heart defects or cleft lip and cleft palate. Physical, occupational, and speech therapy will help individuals with Patau syndrome reach their full developmental potential. Surviving children are described as happy and parents report that they enrich their lives. The cited study grouped Edwards syndrome, which is sometimes survivable beyond toddlerhood, along with Patau, hence the median age of 4 at the time of data collection.
MRI will help with the diagnosis of structural abnormality of the brain. Genetic testing may also be pursued.
The cost of treatment depends on the amount of growth hormone given, which in turn depends on the child's weight and age. One year's worth of drugs normally costs about US $20,000 for a small child and over $50,000 for a teenager. These drugs are normally taken for five or more years.
Treatment of manifestations: special hair care products to help manage dry and sparse hair; wigs; artificial nails; emollients to relieve palmoplantar hyperkeratosis.
Treatment in fibrous dysplasia is mainly palliative, and is focused on managing fractures and preventing deformity. There are no medications capable of altering the disease course. Intravenous bisphosphonates may be helpful for treatment of bone pain, but there is no clear evidence that they strengthen bone lesions or prevent fractures. Surgical techniques that are effective in other disorders, such as bone grafting, curettage, and plates and screws, are frequently ineffective in fibrous dysplasia and should be avoided. Intramedullary rods are generally preferred for management of fractures and deformity in the lower extremities. Progressive scoliosis can generally be managed with standard instrumentation and fusion techniques. Surgical management in the craniofacial skeleton is complicated by frequent post-operative FD regrowth, and should focus on correction of functional deformities. Prophylactic optic nerve decompression increases the risk of vision loss and is contraindicated.
Managing endocrinopathies is a critical component of management in FD. All patients with fibrous dysplasia should be evaluated and treated for endocrine diseases associated with McCune–Albright syndrome. In particular untreated growth hormone excess may worsen craniofacial fibrous dysplasia and increase the risk of blindness. Untreated hypophosphatemia increases bone pain and risk of fractures.
Affected individuals have a somewhat shortened lifespan. The maximum described lifespan is 67 years. Adults with 13q deletion syndrome often need support services to maintain their activities of daily living, including adult day care services or housing services.
Currently, there is not a treatment option for regaining vision by developing a new eye. There are, however, cosmetic options so the absence of the eye is not as noticeable. Typically, the child will need to go to a prosthetic specialist to have conformers fitted into the eye. Conformers are made of clear plastic and are fitted into the socket to promote socket growth and expansion. As the child's face grows and develops, the conformer will need to be changed. An expander may also be needed in anophthalmia to expand the socket that is present. The conformer is changed every few weeks the first two years of life. After that, a painted prosthetic eye can be fitted for the child's socket. The prosthetic eye can be cleaned with mild baby soap and water. Rubbing alcohol should be avoided because it may damage the prosthetic eye. Children need to be checked regularly to ensure the fit and size is appropriate.
The decision to treat is based on a belief that the child will be disabled by being extremely short as an adult, so that the risks of treatment (including sudden death) will outweigh the risks of not treating the symptom of short stature. Although short children commonly report being teased about their height, most adults who are very short are not physically or psychologically disabled by their height. However, there is some evidence to suggest that there is an inverse linear relationship with height and with risk of suicide.
Treatment is expensive and requires many years of injections with human growth hormones. The result depends on the cause, but is typically an increase in final height of about taller than predicted. Thus, treatment takes a child who is expected to be much shorter than a typical adult and produces an adult who is still obviously shorter than average. For example, several years of successful treatment in a girl who is predicted to be as an adult may result in her being instead.
Increasing final height in children with short stature may be beneficial and could enhance health-related quality of life outcomes, barring troublesome side effects and excessive cost of treatments.
Many types of dwarfism are currently impossible to prevent because they are genetically caused. Genetic conditions that cause dwarfism may be identified with genetic testing, by screening for the specific variations that result in the condition. However, due to the number of causes of dwarfism, it may be impossible to determine definitively if a child will be born with dwarfism.
Dwarfism resulting from malnutrition or a hormonal abnormality may be treated with an appropriate diet or hormonal therapy. Growth hormone deficiency may be remedied via injections of human growth hormone (HGH) during early life.
Rhizomelic chondrodysplasia punctata is a rare, developmental brain disorder characterized by systemic shortening of the proximal bones (i.e. rhizomelia), seizures, recurrent respiratory tract infections, and congenital cataracts. The affected individuals have low levels of plasmalogens.