Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Colobomas of the iris may be treated in a number of ways. A simple cosmetic solution is a specialized cosmetic contact lens with an artificial pupil aperture. Surgical repair of the iris defect is also possible. Surgeons can close the defect by stitching in some cases. More recently artificial iris prosthetic devices such as the Human Optics artificial iris have been used successfully by specialist surgeons. This device cannot be used if the natural lens is in place and is not suitable for children. Suture repair is a better option where the lens is still present.
Vision can be improved with glasses, contact lenses or even laser eye surgery but may be limited if the retina is affected or there is amblyopia.
There is no cure for ONH; however, many therapeutic interventions exist for the care of its symptoms. These may include hormone replacement therapy for hypopituitarism, occupational, physical, and/or speech therapy for other issues, and services of a teacher of students with blindness/visually impairment. Special attention should be paid to early development of oral motor skills and acclimation to textured foods for children with texture aversion, or who are otherwise resistant to eating.
Sleep dysfunction can be ameliorated using melatonin in the evening in order to adjust a child's circadian clock.
Treatment for strabismus may include patching of the better eye, which may result in improved vision in the worse eye; however, this should be reserved for cases in which the potential for vision improvement in both eyes is felt to be good. Surgery to align the eyes can be performed once children with strabismus develop equal visual acuity in both eyes, most often after the age of three. Generally surgery results in improved appearance only and not in improved visual function.
While surgeries do exist to correct for severe cases of floaters, there are currently no medications (including eye drops) that can correct for this vitreous deterioration. Floaters are often caused by the normal aging process and will usually disappear as the brain learns to ignore them. Looking up/down and left/right will cause the floaters to leave the direct field of vision as the vitreous humour swirls around due to the sudden movement. If floaters significantly increase in numbers and/or severely affect vision, then one of the below surgeries may be necessary.
Currently, insufficient evidence is available to compare the safety and efficacy of surgical vitrectomy with laser vitreolysis for the treatment of floaters. A 2017 Cochrane Review did not find any relevant studies that compared the two treatments.
Aggressive marketing campaigns are currently promoting the use of laser vitreolysis for the treatment of floaters. No strong evidence currently exists for the treatment of floaters with laser vitreolysis. Currently, the strongest available evidence comparing these two treatment modalities are retrospective case series.
Treatment of lagopthalmos can include both supportive care methods as well as surgical. If unable to receive surgery, artificial tears should be administered at least four times a day to the cornea to preserve the tear film. Leading up to a surgery, a patient can undergo a tarsorrhaphy which partially sews the eye shut temporarily to further protect the cornea as the patient waits for care. Multiple surgical treatments exist for Lagopthalmos but the most prevalent method includes weighing the upper eyelid down by surgically inserting a gold plate. Due to possible complications in conjunction with both the upper and lower eyelid, it might also be required to undergo a second surgery to tighten and elevate the lower eyelid to ensure both the upper and lower eyelids can fully close and protect the cornea.
Enzymatic vitreolysis has been trialled to treat vitreomacular traction (VMT) and anomalous posterior vitreous detachment. Whilst the mechanism of action may have an effect on clinically significant floaters, as of March 2015 there are no clinical trials being undertaken to determine whether this may be a therapeutic alternative to either i) conservative management, or ii) vitrectomy.
Convergence insufficiency may be treated with convergence exercises prescribed by an eyecare specialist trained in orthoptics or binocular vision anomalies. Some cases of convergence insufficiency are successfully managed by prescription of eyeglasses, sometimes with therapeutic prisms.
Pencil push-ups therapy is performed at home. Patient brings a pencil slowly to within 2–3 cm of the eye just above the nose about 15 minutes per day 5 times per week. Patients should record the closest distance that they could maintain fusion (keep the pencil from going double as long as possible) after each 5 minutes of therapy. Computer software may be used at home or in an orthoptists/vision therapists office to treat convergence insufficiency. A weekly 60-minute in-office therapy visit may be prescribed. This is generally accompanied with additional in home therapy.
In 2005, the Convergence Insufficiency Treatment Trial (CITT) published two randomized clinical studies. The first, published in Archives of Ophthalmology demonstrated that computer exercises when combined with office based vision therapy/orthoptics were more effective than "pencil pushups" or computer exercises alone for convergency insufficiency in 9- to 18-year-old children. The second found similar results for adults 19 to 30 years of age. In a bibliographic review of 2010, the CITT confirmed their view that office-based accommodative/vergence therapy is the most effective treatment of convergence insufficiency, and that substituting it in entirety or in part with other eye training approaches such as home-based therapy may offer advantages in cost but not in outcome. A later study of 2012 confirmed that orthoptic exercises led to longstanding improvements of the asthenopic symptoms of convergence sufficiency both in adults and in children. A 2011 Cochrane Review reaffirmed that office-based therapy is more effective than home-based therapy, though the evidence of effectiveness is a lot stronger for children than for the adult population.
Both positive fusional vergence (PFV) and negative fusional vergence (NFV) can be trained, and vergence training should normally include both.
Surgical correction options are also available, but the decision to proceed with surgery should be made with caution as convergence insufficiency generally does not improve with surgery. Bilateral medial rectus resection is the preferred type of surgery. However, the patient should be warned about the possibility of uncrossed diplopia at distance fixation after surgery. This typically resolves within 1–3 months postoperatively. The exophoria at near often recurs after several years, although most patients remain asymptomatic.
Controversies exist around eliminating this disorder from breeding Collies. Some veterinarians advocate only breeding dogs with no evidence of disease, but this would eliminate a large portion of potential breeding stock. Because of this, others recommend only breeding mildly affected dogs, but this would never completely eradicate the condition. Also, mild cases of choroidal hypoplasia may become pigmented and therefore undiagnosable by the age of three to seven months. If puppies are not checked for CEA before this happens, they may be mistaken for normal and bred as such. Checking for CEA by seven weeks of age can eliminate this possibility. Diagnosis is also difficult in dogs with coats of dilute color because lack of pigment in the choroid of these animals can be confused with choroidal hypoplasia. Also, because of the lack of choroidal pigment, mild choroidal hypoplasia is difficult to see, and therefore cases of CEA may be missed.
Until recently, the only way to know if a dog was a carrier was for it to produce an affected puppy. However, a genetic test for CEA became available at the beginning of 2005, developed by the Baker Institute for Animal Health, Cornell University, and administered through OptiGen. The test can determine whether a dog is affected, a carrier, or clear, and is therefore a useful tool in determining a particular dog's suitability for breeding.
The treatment of corneal perforation depends on the location, severity and the cause of damage
- Tissue adhesive can be used to seal small perforation, but this method cannot be used to treat perforations larger than 1 mm.
- Non infected corneal perforation generally heals when a pressure bandage is used.
- For certain types of corneal perforations, lamellar keratoplasty is used as treatment.
With posterior lens luxation, the lens falls back into the vitreous humour and lies on the floor of the eye. This type causes fewer problems than anterior lens luxation, although glaucoma or ocular inflammation may occur. Surgery is used to treat dogs with significant symptoms. Removal of the lens before it moves to the anterior chamber may prevent secondary glaucoma.
Collie eye anomaly (CEA) is a congenital, inherited, bilateral eye disease of dogs, which affects the retina, choroid, and sclera. It can be a mild disease or cause blindness. CEA is caused by a simple autosomal recessive gene defect. There is no treatment.
Lens subluxation is also seen in dogs and is characterized by a partial displacement of the lens. It can be recognized by trembling of the iris (iridodonesis) or lens (phacodonesis) and the presence of an aphakic crescent (an area of the pupil where the lens is absent). Other signs of lens subluxation include mild conjunctival redness, vitreous humour degeneration, prolapse of the vitreous into the anterior chamber, and an increase or decrease of anterior chamber depth. Removal of the lens before it completely luxates into the anterior chamber may prevent secondary glaucoma. A nonsurgical alternative involves the use of a miotic to constrict the pupil and prevent the lens from luxating into the anterior chamber.
Acquired heterochromia is usually due to injury, inflammation, the use of certain eyedrops that damages the iris, or tumors.
Typically, treatment for this condition requires a team of specialists and surgery. Below are the treatments based on the symptom.
Without the focusing power of the lens, the eye becomes very farsighted. This can be corrected by wearing glasses, contact lenses, or by implant of an artificial lens. Artificial lenses are described as "pseudophakic." Also, since the lens is responsible for adjusting the focus of vision to different lengths, patients with aphakia have a total loss of accommodation.
Some individuals have said that they perceive ultraviolet light, invisible to those with a lens, as whitish blue or whitish-violet.
Nocturnal lagophthalmos is the inability to close the eyelids during sleep. It may reduce the quality of sleep, cause exposure-related symptoms or, if severe, cause corneal damage (exposure keratopathy). The degree of lagophthalmos can be minor (obscure lagophthalmos), or quite obvious.
It is often caused by an anomaly of the eyelid that prevents full closure. Treatment may involve surgery to correct the malposition of the eyelid(s). Punctal plugs may be used to increase the amount of lubrication on the surface of the eyeball by blocking some of the tear drainage ducts. Eye drops may also be used to provide additional lubrication or encourage the eyes to increase tear production.
The condition is not widely understood; in at least one instance a passenger was removed from a US Airways flight because of it.
Many treatments have been tried for port-wine stains including freezing, surgery, radiation, and tattooing; port-wine stains can also be covered with cosmetics.
Lasers may be able to destroy the capillaries without significant damage to the overlying skin. Lasers and other light sources may therefore be able to reduce the redness of stains, although there is not enough evidence to recommend one form over another.
For most people in trials of pulsed dye laser, more than 25% of the redness was reduced by laser after one to three treatments. Adverse effects were rare in these trials, although some people had changes to the color of the skin, especially Chinese people with darker skin. There can be pain, crusting, and blistering in the two weeks after treatment. The trials only followed people for six months, so long-term outcomes are not known. Up to 10 treatments may be necessary for improvement, but complete removal may not result.
The use of topical rapamycin as an adjunct to pulsed dye laser may improve results.
Treatment is generally given before one year of age. However, as it is recommended to be performed under anesthesia (15 minutes) on small children, it is not always possible to get frequent treatments. For example in Finland a child gets treated 2-3 times per year, resulting in a target of "being ready before school age" (7 years) "(needs citation)".
After the laser treatment the skin is filled with black marks, the size of a pen. This is due to the laser instrument's size; the black marks disappear within 1–3 weeks. The treated area can be sore and swollen for a couple of days.
Heterochromia has also been observed in those with Duane syndrome.
There is currently recruitment for a clinical trial at Boston's Children Hospital.
A coloboma (from the Greek "koloboma", meaning defect) is a hole in one of the structures of the eye, such as the iris, retina, choroid, or optic disc. The hole is present from birth (except for one case, where it developed within the first few months of the child's life) and can be caused when a gap called the choroid fissure, which is present during early stages of prenatal development, fails to close up completely before a child is born.
The classical description in medical literature is of a key-hole shaped defect. A coloboma can occur in one eye (unilateral) or both eyes (bilateral). Most cases of coloboma affect only the iris. People with coloboma may have no vision problems or may be blind, depending on severity. It affects less than one in every 10,000 births.
The visual prognosis in optic nerve hypoplasia is quite variable. Occasionally, optic nerve hypoplasia may be compatible with near-normal vision; in other cases, one or both eyes may be functionally, or legally blind. Although most patients with only optic nerve involvement lead normally productive lives, those with accompanying endocrine dysfunction or other midline cerebral abnormalities are more at risk for on-going intellectual and other disabilities.
Simple surgical excision is curative. The recommended treatment is that the skin is peeled off the extra-auricular tissue and protruding cartilage remnants are trimmed. Normal appearance is achieved in majority of cases. The reconstruction successful in true cases of accessory auricle, as it also is in individuals with auricular appendages.
Sclerocornea is a congenital anomaly of the eye in which the cornea blends with sclera, having no clear-cut boundary. The extent of the resulting opacity varies from peripheral to total ("sclerocornea totalis"). The severe form is thought to be inherited in an autosomal recessive manner, but there may be another, milder form that is expressed in a dominant fashion. In some cases the patients also have abnormalities beyond the eye (systemic), such as limb deformities and craniofacial and genitourinary defects.
According to one tissue analysis performed after corneal transplantation, the sulfation pattern of keratan sulfate proteoglycans in the affected area is typical for corneal rather than scleral tissue.
Sclerocornea may be concurrent with cornea plana.
Immunosuppressant and anti-inflammatory therapy serves to stop on-going destruction of the sebaceous glands. Like other inflammatory diseases, most animals receive an initial course to stop the inflammation and treatment is tapered off to the lowest dose that keeps the disease in remission. Oral cyclosporine may be used. Corticosteroids (e.g. prednisone) are used only if pruritus is a major clinical feature.
There is no cure for this condition. Treatment is generally lifelong and takes the form of bathing and soaking in mineral oils and washing with antibiotic shampoos to try to alleviate symptoms and slow the condition's progression. Antiseptic and antibiotic shampoos (chlorhexidine or benzoyl peroxide) are used to manage further secondary bacterial infection. For some breeds, cyclosporine or corticosteroids and immunosuppressant drugs may be effective, and it is postulated, through some studies, that large doses of vitamin A given orally may result in some improvement.
It has been suggested that the more aggressively one applies the topical methods of treatment, the less aggressively one needs to employ the immunosuppressant therapy. The suggestion is that this phenomenon may be due to a feedback whereby secondary infection, when not aggressively treated with topical therapy, increases and contributes to further sebaceous gland inflammation.
Aphakia is the absence of the lens of the eye, due to surgical removal, a perforating wound or ulcer, or congenital anomaly. It causes a loss of accommodation, far sightedness (hyperopia), and a deep anterior chamber. Complications include detachment of the vitreous or retina, and glaucoma.
Babies are rarely born with aphakia. Occurrence most often results from surgery to remove congenital cataract (clouding of the eye's lens, which can block light from entering the eye and focusing clearly). Congenital cataracts usually develop as a result of infection of the fetus or genetic reasons. It is often difficult to identify the exact cause of these cataracts, especially if only one eye is affected.
People with aphakia have relatively small pupils and their pupils dilate to a lesser degree.