Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The tissues in the mediastinum will slowly resorb the air in the cavity so most pneumomediastinums are treated conservatively. Breathing high flow oxygen will increase the absorption of the air.
If the air is under pressure and compressing the heart, a needle may be inserted into the cavity, releasing the air.
Surgery may be needed to repair the hole in the trachea, esophagus or bowel.
If there is lung collapse, it is imperative the affected individual lies on the side of the collapse, although painful, this allows full inflation of the unaffected lung.
Prevention is a more successful strategy than treatment. By using the most conservative decompression schedule reasonably practicable, and by minimizing the number of major decompression exposures, the risk of DON may be reduced. Prompt treatment of any symptoms of decompression sickness (DCS) with recompression and hyperbaric oxygen also reduce the risk of subsequent DON.
Treatment is difficult, often requiring a joint replacement. Spontaneous improvement occasionally happens and some juxta-articular lesions do not progress to collapse. Other treatments include immobilization and osteotomy of the femur. Cancellous bone grafts are of little help.
The use of steroids (Dexamethasone) coupled with an antibiotic (Amoxicillin) will support the kitten in a number of ways, the steroid enhancing maturation and the antibiotic addressing the possibility of underlying infection and compensating for the immuno-depressant properties of the steroid. The steroid will also encourage the kitten to feed more energetically, keeping its weight up. Several breeders believe that Taurine plays a part in the condition, and it may be that some cases are Taurine-related. These breeders give the queen large doses of Taurine (1000 mg) daily until the kittens recover – apparently within a few days. Given that most FCKS cases take weeks rather than days to recover, this supplement may be relevant.
If the symptoms are severe enough, treatment may be needed. These range from medical management over mechanical ventilation (both continuous positive airway pressure (CPAP), or bi-level positive airway pressure (BiPAP) to tracheal stenting and surgery.
Surgical techniques include aortopexy, tracheopexy, tracheobronchoplasty, and tracheostomy. The role of the nebulised recombinant human deoxyribonuclease (rhDNase) remains inconclusive.
Treatment is difficult to define given the number of different causes and the wealth of anecdotal information collected by and from cat breeders. Treatments have hitherto been based on the assumption that FCKS is caused by a muscular spasm, and their effectiveness is impossible to assess because some kittens will recover spontaneously without intervention.
Diaphragmatic spasm is easily tested for and treated by short term interruption of the Phrenic nerve. The nerve runs down the outside of the neck where the neck joins to the shoulder, within a bundle of muscles and tendons at this junction. The cluster can be pinched gently and held for a few seconds each time. Kittens with spasmodic FCKS will show almost immediate improvement, but the treatment may need to be repeated several times over a few days as the spasm may have a tendency to recur. [Um für diapragmatisch Sparmus zu prüfen, Sie müssen der Phrenikus finden (es heisst auch der Zwerchfellnerv), der lauft am aussen des Hals, wo der Hals trifft die Schulter. Da gibt es mehrere Muskeln und Sehnen–da es unmoeglich ist die Nerv allein zu finden bzw. kneifen, müssen Sie die ganze Menge zusammen ruhig kneifen für ein paar Sekunden. Wenn es doch diapragmatisch Spasmus ist und Sie das Phrenikus gut kneifest (manchmal aber nicht immer werde die Katze mit den hinteren Beinen kicken), sollen Sie sofort eine Verbesserung anschauen. Es kann sein, dass die Spasmus wieder kommt nachher im kommenden Tage—in dem Fall müssen Sie es nochmal machen. Wenn Sie aber keine Verbesserung siehst, ist der Problem dann leider etwas anders.]
Continuous positive air pressure (CPAP) is used in human babies with lung collapse, but this is impossible with kittens. It is possible that the success of some breeders in curing kittens by splinting the body, thus putting pressure on the ribcage, was successful as it has created the effect of positive air pressure, thus gradually re-inflating the lungs by pulling them open rather than pushing them open as is the case with CPAP.
Treatment is directed at correcting the underlying cause. Post-surgical atelectasis is treated by physiotherapy, focusing on deep breathing and encouraging coughing. An incentive spirometer is often used as part of the breathing exercises. Walking is also highly encouraged to improve lung inflation. People with chest deformities or neurologic conditions that cause shallow breathing for long periods may benefit from mechanical devices that assist their breathing. One method is continuous positive airway pressure, which delivers pressurized air or oxygen through a nose or face mask to help ensure that the alveoli do not collapse, even at the end of a breath. This is helpful, as partially inflated alveoli can be expanded more easily than collapsed alveoli. Sometimes additional respiratory support is needed with a mechanical ventilator.
The primary treatment for acute massive atelectasis is correction of the underlying cause. A blockage that cannot be removed by coughing or by suctioning the airways often can be removed by bronchoscopy. Antibiotics are given for an infection. Chronic atelectasis is often treated with antibiotics because infection is almost inevitable. In certain cases, the affected part of the lung may be surgically removed when recurring or chronic infections become disabling or bleeding is significant. If a tumor is blocking the airway, relieving the obstruction by surgery, radiation therapy, chemotherapy, or laser therapy may prevent atelectasis from progressing and recurrent obstructive pneumonia from developing.
Treatment depends on the underlying cause. Treatments include iced saline, and topical vasoconstrictors such as adrenalin or vasopressin. Selective bronchial intubation can be used to collapse the lung that is bleeding. Also, endobronchial tamponade can be used. Laser photocoagulation can be used to stop bleeding during bronchoscopy. Angiography of bronchial arteries can be performed to locate the bleeding, and it can often be embolized. Surgical option is usually the last resort, and can involve, removal of a lung lobe or removal of the entire lung. Non–small-cell lung cancer can also be treated with erlotinib or gefitinib. Cough suppressants can increase the risk of choking.
There are some preliminary studies that seem to indicate that treatment with hydrogen sulfide (HS) can have a protective effect against reperfusion injury.
Acute respiratory distress syndrome is usually treated with mechanical ventilation in the intensive care unit (ICU). Mechanical ventilation is usually delivered through a rigid tube which enters the oral cavity and is secured in the airway (endotracheal intubation), or by tracheostomy when prolonged ventilation (≥2 weeks) is necessary. The role of non-invasive ventilation is limited to the very early period of the disease or to prevent worsening respiratory distress in individuals with atypical pneumonias, lung bruising, or major surgery patients, who are at risk of developing ARDS. Treatment of the underlying cause is crucial. Appropriate antibiotic therapy must be administered as soon as microbiological culture results are available, or clinical infection is suspected (whichever is earlier). Empirical therapy may be appropriate if local microbiological surveillance is efficient. The origin of infection, when surgically treatable, must be removed. When sepsis is diagnosed, appropriate local protocols should be enacted.
Inhaled nitric oxide (NO) selectively widens the lung's arteries which allows for more blood flow to open alveoli for gas exchange. Despite evidence of increased oxygenation status, there is no evidence that inhaled nitric oxide decreases morbidity and mortality in people with ARDS. Furthermore, nitric oxide may cause kidney damage and is not recommended as therapy for ARDS regardless of severity.
Pneumothorax can be a medical emergency, as it can become associated with decreased lung function, and if progressed to tension pneumothorax, potentially fatal. A chest tube should be inserted after clinical assessment. This releases the air and menstrual blood, and the lung can re-expand.
Surgery, hormonal treatments and combined approaches have all been proposed, with variable results in terms of short and long term outcome. Surgical removal of the endometrial tissue should be endeavoured during menstruation for optimal visualisation of the cyst. Pleurodesis may also be helpful. Menstruation and accompanying lung collapse can be suppressed with hormone therapy, like with Lupron Depot, danazol or extended cycle combined oral contraceptive pills.
An intriguing area of research demonstrates the ability of a reduction in body temperature to limit ischemic injuries. This procedure is called therapeutic hypothermia, and it has been shown by a number of large, high-quality randomised trials to significantly improve survival and reduce brain damage after birth asphyxia in newborn infants, almost doubling the chance of normal survival. For a full review see Hypothermia therapy for neonatal encephalopathy.
However, the therapeutic effect of hypothermia does not confine itself to metabolism and membrane stability. Another school of thought focuses on hypothermia’s ability to prevent the injuries that occur after circulation returns to the brain, or what is termed injuries. In fact an individual suffering from an ischemic insult continues suffering injuries well after circulation is restored. In rats it has been shown that neurons often die a full 24 hours after blood flow returns. Some theorize that this delayed reaction derives from the various inflammatory immune responses that occur during reperfusion. These inflammatory responses cause intracranial pressure, pressure which leads to cell injury and in some situations cell death. Hypothermia has been shown to help moderate intracranial pressure and therefore to minimize the harmful effect of a patient’s inflammatory immune responses during reperfusion. Beyond this, reperfusion also increases free radical production. Hypothermia too has been shown to minimize a patient’s production of deadly free radicals during reperfusion. Many now suspect it is because hypothermia reduces both intracranial pressure and free radical production that hypothermia improves patient outcome following a blockage of blood flow to the brain.
The effects of a circulatory collapse vary based on the type of collapse it is. Peripheral collapses usually involve abnormally low blood pressure and result in collapsed arteries and/or veins, leading to oxygen deprivation to tissues, organs, and limbs.
Acute collapse can result from heart failure causing the primary vessels of the heart to collapse, perhaps combined with cardiac arrest.
A very large range of medical conditions can cause circulatory collapse. These include, but are not limited to:
- Surgery, particularly on patients who have lost blood.
- Blood clots, including the use of some platelet-activating factor drugs in some animals and humans
- Dengue Fever
- Severe dehydration
- Shock (including, among other types, many cases of cardiogenic shock- e.g., after a myocardial infarction or during heart failure; distributive shock, hypovolemic shock, resulting from large blood loss; and severe cases of septic shock)
- Heart Disease (myocardial infarction- heart attack; acute or chronic congestive or other heart failure, ruptured or dissecting aneurysms; large, especially hemorrhagic, stroke; some untreated congenital heart defects; failed heart transplant)
- Superior mesenteric artery syndrome
- Drugs that affect blood pressure
- Drinking seawater
- As a complication of dialysis
- Intoxicative inhalants
To properly treat a patient with tracheobronchomalacia, the subtype must be determined (primary or secondary). After the type is named, the cause must be identified, whether it is from genetics, a trauma accident, or chronic tracheal illness. If a trauma case or chronic tracheal illnesses were the cause, the first steps of treatment would be to fix or help these underlying issues. If the cause is genetic or the previous underlying issues could not be fixed, other treatments would be assessed. More severe treatments include silicone stenting to prevent tracheal constriction, surgery to strengthen or attempt to rebuild the walls, continuous positive airway pressure that has a machine blow small amounts of air into the trachea to keep it open (mainly at night), or a tracheostomy, which is surgically put into your neck that leads to your trachea to help with breathing. People with tracheobronchomalacia who do not experience symptoms do not need treatment and are often undiagnosed.
The optimal management of laryngotracheal stenosis is not well defined, depending mainly on the type of the stenosis.
General treatment options include
1. Tracheal dilation using rigid bronchoscope
2. Laser surgery and endoluminal stenting
3. Tracheal resection and laryngotracheal reconstructionr
Tracheal is used to temporarily enlarge the airway. The effect of dilation typically lasts from a few days to 6 months. Several studies have shown that as a result of mechanical dilation (used alone) may occur a high mortality rate and a rate of recurrence of stenosis higher than 90%.
Thus, many authors treat the stenosis by endoscopic excision with laser (commonly either the carbon dioxide or the neodymium: yttrium aluminum garnet laser) and then by using bronchoscopic dilatation and prolonged stenting with a T-tube (generally in silicone).
There are differing opinions on treating with laser surgery.
In very experienced surgery centers, tracheal resection and reconstruction (anastomosis complete end-to-end with or without laryngotracheal temporary stent to prevent airway collapse) is currently the best alternative to completely cure the stenosis and allows to obtain good results. Therefore, it can be considered the gold standard treatment and is suitable for almost all patients.
The narrowed part of the trachea will be cut off and the cut ends of the trachea sewn together with sutures. For stenosis of length greater than 5 cm a stent may be required to join the sections.
Late June or early July 2010, a new potential treatment was trialed at Great Ormond Street Hospital in London, where Ciaran Finn-Lynch (aged 11) received a transplanted trachea which had been injected with stem cells harvested from his own bone marrow. The use of Ciaran's stem cells was hoped to prevent his immune system from rejecting the transplant, but there remain doubts about the operation's success, and several later attempts at similar surgery have been unsuccessful.
Preventing alveolar overdistension – Alveolar overdistension is mitigated by using small tidal volumes, maintaining a low plateau pressure, and most effectively by using volume-limited ventilation.
Preventing cyclic atelectasis (atelectotrauma) – Applied positive end-expiratory pressure (PEEP) is the principal method used to keep the alveoli open and lessen cyclic atelectasis.
Open lung ventilationn – Open lung ventilation is a ventilatory strategy that combines small tidal volumes (to lessen alveolar overdistension) and an applied PEEP above the low inflection point on the pressure-volume curve (to lessen cyclic atelectasis).
High frequency ventilation is thought to reduce ventilator-associated lung injury, especially in the context of ARDS and acute lung injury.
Permissive hypercapnia and hypoxaemia allow the patient to be ventilated at less aggressive settings and can thererfore mitigate all forms of ventilator associated lung injury
Evidence is insufficient to support the use of medications to treat obstructive sleep apnea. This includes the use of fluoxetine, paroxetine, acetazolamide and tryptophan among others.
A couple of medications are used to relieve pleurisy symptoms:
- Paracetamol (acetaminophen) or anti-inflammatory agents to control pain and decrease inflammation. Only indomethacin (brand name Indocin) has been studied with respect to relief of pleurisy.
- Codeine-based cough syrups to control the cough
There may be a role for the use of corticosteroids (for tuberculous pleurisy), tacrolimus (Prograf) and methotrexate (Trexall, Rheumatrex) in the treatment of pleurisy. Further studies are needed.
Time is the only treatment necessary in more than 90% of infant cases. In other cases, surgery may be necessary. Most commonly, this involves cutting the aryepiglottic folds to let the supraglottic airway spring open. Trimming of the arytenoid cartilages or the mucosa/ tissue over the arytenoid cartilages can also be performed as part of the supraglottoplasty. Supraglottoplasty can be performed bilaterally (on both the left and right sides at the same time), or be staged where only one side is operated on at a time.
Treatment of gastroesophageal reflux disease can also help in the treatment of laryngomalacia, since gastric contents can cause the back part of the larynx to swell and collapse even further into the airway.
In some cases, a temporary tracheostomy may be necessary.
Ideally, the treatment of pleurisy is aimed at eliminating the underlying cause of the disease.
- If the pleural fluid is infected, treatment involves antibiotics and draining the fluid. If the infection is tuberculosis or from a fungus, treatment involves long-term use of antibiotics or antifungal medicines.
- If the fluid is caused by tumors of the pleura, it may build up again quickly after it is drained. Sometimes anti-tumor medicines will prevent further fluid buildup. If they don't, the doctor may seal the pleural space. This is called pleurodesis. Pleurodesis involves the drainage of all the fluid out of the chest through a chest tube. A substance is inserted through the chest tube into the pleural space. This substance irritates the surface of the pleura. This causes the two layers of the pleurae to squeeze shut so there is no room for more fluid to build up.
- Chemotherapy or radiation treatment also may be used to reduce the size of the tumors.
- If congestive heart failure is causing the fluid buildup, treatment usually includes diuretics and other medicines.
The treatment for pleurisy depends on its origin and is prescribed by a physician on a base of an individual assessment. Paracetamol (acetaminophen) and amoxicillin, or other antibiotics in case of bacterial infections, are common remedies dispensed by doctors to relieve the initial symptoms and pain in the chest, while viral infections are self-limited. Non-steroidal anti-inflammatory drugs (NSAIDs), preferably indometacin, are usually employed as pain control agents.
Collapsed veins are a common result of chronic use of intravenous injections. They are particularly common where injecting conditions are less than ideal, such as in the context of drug abuse.
Veins may become temporarily blocked if the internal lining of the vein swells in response to repeated injury or irritation. This may be caused by the needle, the substance injected, or donating plasma. Once the swelling subsides, the circulation will often become re-established.
Permanent vein collapse occurs as a consequence of:
- Long-term injecting
- Repeated injections, especially with blunt needles
- Poor technique
- Injection of substances which irritate the veins; in particular, injection of liquid methadone intended for oral use.
Smaller veins may collapse as a consequence of too much suction being used when pulling back against the plunger of the syringe to check that the needle is in the vein. This will pull the sides of the vein together and, especially if they are inflamed, they may stick together causing the vein to block. Removing the needle too quickly after injecting can have a similar effect.
Collapsed veins may never recover. Many smaller veins are created by the body to circulate the blood, but they are not adequate for injections or IVs.
Oxygen is given with a small amount of continuous positive airway pressure ("CPAP"), and intravenous fluids are administered to stabilize the blood sugar, blood salts, and blood pressure. If the baby's condition worsens, an endotracheal tube (breathing tube) is inserted into the trachea and intermittent breaths are given by a mechanical device. An exogenous preparation of surfactant, either synthetic or extracted from animal lungs, is given through the breathing tube into the lungs. Some of the most commonly used surfactants are Survanta or its generic form Beraksurf, derived from cow lungs, which can decrease the risk of death in hospitalized very-low-birth-weight infants by 30%. Such small premature infants may remain ventilated for months. A study shows that an aerosol of a perfluorocarbon such as perfluoromethyldecalin can reduce inflammation in swine model of IRDS. Chronic lung disease including bronchopulmonary dysplasia are common in severe RDS. The etiology of BPD is problematic and may be due to oxygen, overventilation or underventilation. The mortality rate for babies greater than 27 weeks gestation is less than 20%
Extracorporeal membrane oxygenation (ECMO) is a potential treatment, providing oxygenation through an apparatus that imitates the gas exchange process of the lungs. However, newborns cannot be placed on ECMO if they are under 4.5 pounds (2 kg), because they have extremely small vessels for cannulation, thus hindering adequate flow because of limitations from cannula size and subsequent higher resistance to blood flow (compare with vascular resistance). Furthermore, in infants aged less than 34 weeks of gestation several physiologic systems are not well-developed, specially the cerebral vasculature and germinal matrix, resulting in high sensitivity to slight changes in pH, PaO, and intracranial pressure. Subsequently, preterm infants are at unacceptably high risk for intraventricular hemorrhage (IVH) if administered ECMO at a gestational age less than 32 weeks.
- The INSURE Method
Henrik Verder is the inventor and pioneer of the INSURE method, a very effective approach to managing preterm neonates with respiratory distress. The method itself has been shown, through meta-analysis; to successfully decrease the use of mechanical ventilation and lower the incidence of bronchopulmonary dysplasia (BPD). Since its conception in 1989 the INSURE method has been academically cited in more than 500 papers. The first randomised study about the INSURE method was published in 1994 and a second randomised study in infants less than 30 weeks gestation was published by the group in 1999. In the last 15 years Henrik has worked with lung maturity diagnostics on gastric aspirates obtained at birth. By combining this diagnostic method with INSURE, Henrik has worked to further improve the clinical outcome of RDS. The lung maturity tests used have been the microbubble test, lamellar body counts (LBC) and measurements of lecithin-sphingomyelin ratio (L/S) with chemometrics, which involved a collaboration with Agnar Höskuldsson.
Laryngomalacia becomes symptomatic after the first few months of life (2–3 months), and the stridor may get louder over the first year, as the child moves air more vigorously. Most of the cases resolve spontaneously and less than 15% of the cases will need surgical intervention. Parents need to be supported and educated about the condition.