Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The treatment of CMML remains challenging due to the lack of clinical trials investigating the disease as its own clinical entity. It is often grouped with MDS in clinical trials, and for this reason the treatment of CMML is very similar to that of MDS. Most cases are dealt with as supportive rather than curative because most therapies do not effectively increase survival. Indications for treatment include the presence of B symptoms, symptomatic organ involvement, increasing blood counts, hyperleukocytosis, leukostasis and/or worsening cytopaenias.
Blood transfusions and EPO administration are used to raise haemoglobin levels in cases with anaemia.
Azacitidine is a drug approved by the US Food & Drug Administration (FDA) for the treatment of CMML and by the European Medicines Agency for high risk non-proliferative CMML with 10-19% marrow blasts. It is a cytidine analogue that causes hypomethylation of DNA by inhibition of DNA methyltransferase. Decitabine is a similar drug to azacitidine and is approved by the FDA for treatments of all subtypes of MDS, including CMML. Hydroxyurea is a chemotherapy that is used in the myeloproliferative form of CMML to reduce cell numbers.
Haematopoietic stem cell transplant remains the only curative treatment for CMML. However, due to the late age of onset and presence of other illnesses, this form of treatment is often not possible.
Alemtuzumab has been investigated for use in treatment of refractory T-cell large granular lymphocytic leukemia.
Currently Aggressive NK-cell leukemia, being a subtype of PTCL, is treated similarly to B-cell lymphomas. However, in recent years, scientists have developed techniques to better recognize the different types of lymphomas, such as PTCL. It is now understood that PTCL behaves differently from B-cell lymphomas and therapies are being developed that specifically target these types of lymphoma. Currently, however, there are no therapies approved by the U.S. Food and Drug Administration (FDA) specifically for PTCL. Anthracycline-containing chemotherapy regimens are commonly offered as the initial therapy. Some patients may receive a stem cell transplant. Novel approaches to the treatment of PTCL in the relapsed or refractory setting are under investigation.
The only treatment for Omenn syndrome is chemotherapy followed by a bone marrow transplantation. Without treatment, it is rapidly fatal in infancy.
Treatment primarily consists of reducing eosinophil levels and preventing further damage to organs. Corticosteroids, such as Prednisone, are good for reducing eosinophil levels and antineoplastics are useful for slowing eosinophil production. Surgical therapy is rarely utilised, however splenectomy can reduce the pain due to spleen enlargement. If damage to the heart (in particular the valves), then prosthetic valves can replace the current organic ones. Follow-up care is vital for the survival of the patient, as such the patient should be checked for any signs of deterioration regularly. After promising results in drug trials (95% efficiency in reducing blood eosinophil count to acceptable levels) it is hoped that in the future hypereosinophilic syndrome, and diseases related to eosinophils such as asthma and eosinophilic granulomatosis with polyangiitis, may be treated with the monoclonal antibody Mepolizumab currently being developed to treat the disease. If this becomes successful, it may be possible for corticosteroids to be eradicated and thus reduce the amount of side effects encountered.
CHOP frequently induces remission initially, but most patients relapse and die within two years. Autologous bone marrow transplantation is currently being investigated in the treatment of hepatosplenic lymphoma. Allogeneic bone marrow transplant has been proven to attain remission for over five years and possibly cure hepatosplenic lymphoma.
Median survival is about 9 months.
Autologous stem cell transplantation has been used in treatment.
Most patients with "ETV6-ACSL6"-related disease present with findings similar to eosinophilia, hypereosinophila, or chronic eosinophilic leukemia; at least 4 cases presented with eosinophilia plus findings of the red blood cell neoplasm, polycythemia vera; three cases resembled acute myelogenous leukemia; and one case presented with findings of a combined Myelodysplastic syndrome/myeloproliferative neoplasm. Best treatments for "ETV6-ACSL6"-related disease are unclear. Patients with the polycythemia vera form of the disease have been treated by reducing the circulating red blood cell load by phlebotomy or suppressing red blood cell formation using hydroxyurea. Individual case studies report that "ETV6-ACSL6"-associated disease is insensitive to tyrosine kinase inhibitors. Best treatment currently available, therefore, may involve chemotherapy and bone marrow transplantion.
Pralatrexate is one compound currently under investigations for the treatment of PTCL.
Treatment is directed toward the underlying cause. However, in primary eosinophilia, or if the eosinophil count must be lowered, corticosteroids such as prednisone may be used. However, immune suppression, the mechanism of action of corticosteroids, can be fatal in patients with parasitosis.
Lymphocyte-variant hypereosinophilia usually takes a benign and indolent course. Long term treatment with corticosteroids lowers blood eosinophil levels as well as suppresses and prevents complications of the disease in >80% of cases. However, signs and symptoms of the disease recur in virtually all cases if corticosteroid dosages are tapered in order to reduce the many adverse side effects of corticosteroids. Alternate treatments used to treat corticosteroid resistant disease or for use as corticosteroid-sparing substitutes include interferon-α or its analog, Peginterferon alfa-2a, Mepolizumab (an antibody directed against IL-5), Ciclosporin (an Immunosuppressive drug), imatinib (an inhibitor of tyrosine kinases; numerous tyrosine kinase cell signaling proteins are responsible for the growth and proliferation of eosinophils {see clonal eosinophilia}), methotrexate and Hydroxycarbamide (both are chemotherapy and immunosuppressant drugs), and Alemtuzumab (a antibody that binds to the CD52 antigen on mature lymphocytes thereby marking them for destruction by the body). The few patients who have been treated with these alternate drugs have exhibited good responses in the majority of instances. Reslizumab, a newly developed antibody directed against interleukin 5 that has been successfully used to treat 4 patients with the hypereosinophilic syndrome, may also be of use for lymphocyte-variant eosinophilia. Patients suffering minimal or no disease complications have gone untreated.
In 10% to 25% of patients, mostly 3 to 10 years after initical diagnosis, the indolent course of lymphocyte-variant hypereosinophilia changes. Patients exhibit rapid increases in lymphadenopathy, spleen size, and blood cell numbers, some cells of which take on the appearance of immature and/or malignant cells. Their disease soon thereafter escalates to an angioimmunoblastic T-cell lymphoma, peripheral T cell lymphoma, Anaplastic large-cell lymphoma (which unlike most lymphomas of this type is Anaplastic lymphoma kinase-negative), or Cutaneous T cell lymphoma. The malignantly transformed disease is aggressive and has a poor prognosis. Recommended treatment includes chemotherapy with Fludarabine, Cladribine, or the CHOP combination of drugs followed by bone marrow transplantation.
Multiagent chemotherapy is recommended, but the preferred regimen is controversial, as is consolidative radiotherapy.
As reported by Dispenzieri "et al." Mayo Clinic treatment regimens are tailored to treat the clinical manifestations and prognosis for the rate of progression of the POEMS syndrome in each patient. In rare cases, patients may have minimal or no symptoms at presentation or after successful treatment of their disorder. These patients may be monitored every 2–3 months for symptoms and disease progression. Otherwise, treatment is divided based on the local versus systemic spread of its clonal plasma cells. Patients with one or two plasmacytoma bone lesions and no clonal plasma cells in their bone marrow biopsy specimens are treated by surgical removal or radiotherapy of their tumors. These treatments can relieve many of the syndromes clinical manifestations including neuropathies, have a 10-year overall survival of 70% and a 6-year progression-free survival of 62%. Patients with >2 plasmacytoma bone lesions and/or increases in bone marrow clonal plasma cells are treated with a low-dose or high-dose chemotherapy regimen, i.e. a corticosteroid such as dexamethasone plus an alkylating agents such as melphalan. Dosage regimens are selected on the basis of patient tolerance. Hematological response rates to the dexamethasone/melphalan regimens have been reported to be in the 80% range with neurological response rates approaching 100%. Patients successfully treated with the high-dose dexamethasone/melphalan regimen have been further treated with autologous stem cell transplantation. In 59 patients treated with the chemotherapy/transplantation regimen, the Mayo Clinic reported progression-free survival rates of 98%, 94%, and 75% at 1, 2, and 5 years, respectively.
Other treatment regiments are being studied. Immunomodulatory imide drugs such as thalidomide and lenalidomide have been used in combination with dexamethasone to treat POEMS syndrome patients. While the mechanism of action fo these immunomodulators are not clear, they do inhibit the production of cytokines suspected of contributing to POEMS syndrome such as VEGF, TNFα, and IL-6 and stimulate T cells and NK cells to increase their production of interferon gamma and interleukin 2 (see immunomodulatory imide drug's mechanism of action). A double blind study of 25 POEMS syndrome patients found significantly better results (VEGF reduction, neuromuscular function improvement, quality of life improvement) in patients treated with thalidomide plus dexamethasone compared to patients treated with a thalidomide placebo plus dexamethasone.
Since VEGF plays a central role in the symptoms of POEMS syndrome, some have tried bevacizumab, a monoclonal antibody directed against VEGF. While some reports were positive, others have reported capillary leak syndrome suspected to be the result of overly rapid lowering of VEGF levels. It therefore remains doubtful as to whether this will become part of standard treatment for POEMS syndrome.
The protein electrophoresis test should be repeated annually, and if there is any concern for a rise in the level of monoclonal protein, then prompt referral to a hematologist is required. The hematologist, when first evaluating a case of MGUS, will usually perform a skeletal survey (X-rays of the proximal skeleton), check the blood for hypercalcemia and deterioration in renal function, check the urine for Bence Jones protein and perform a bone marrow biopsy. If none of these tests are abnormal, a patient with MGUS is followed up once every 6 months to a year with a blood test (serum protein electrophoresis). Although patients with MGUS have sometimes been reported to suffer from Small Fiber Neuropathy in monoclonal gammopathy of undetermined significance:a debilitating condition which causes bizarre sensory problems to painful sensory problems. peripheral neuropathy, no treatment is indicated.
Patients with hematological disease related to the cited "FLT3" fusion genes present with either a myeloid or lymphoid neoplasm plus eosinophilia. Four of 6 patients with "ETV6-FLT3"-related disease, a patient with "GOLGB1-FLT3"-related disease, and a patient with "TRIP11-FLT3"-related disease presented with findings similar to T-cell lymphoma while a patient with "SPTBN1-FLT3"-related disease had findings of chronic myelogenous leukemia. Two patients with "ETV6-FLT3"-related disease experienced complete hematologic remissions when treated with a multi-kinase inhibitor, sunitinib, that has inhibitory activity against FLT3 protein. However, these remissions were short-lived. A third patient with "ETV6-FLT3"-related disease was treated with a similarly active kinase inhibitor, sorafenib. This patient achieved a complete hematological response and was then given a hematopoietic stem cell transplantation. The latter treatment regimen, FLT3 inhibitor followed by hematopoietic stem cell transplantation, may be the best approach currently available for treating "FLT3"-releated hematological disease.
In general, the first line of treatment for Burkitt’s lymphoma is intensive chemotherapy. A few of these regimens are: the GMALL-B-ALL/NHL2002 protocol, the modified Magrath regimen (R-CODOX-M/IVAC). COPADM, hyper-CVAD, and the Cancer and Leukemia Group B (CALGB) 8811 regimen; these can be associated with rituximab. In older patients treatment may be dose-adjusted EPOCH with rituximab.
The effects of the chemotherapy, as with all cancers, depend on the time of diagnosis. With faster-growing cancers, such as Burkitt's, the cancer actually responds faster than with slower-growing cancers. This rapid response to chemotherapy can be hazardous to the patient, as a phenomenon called "tumor lysis syndrome" could occur. Close monitoring of the patient and adequate hydration is essential during the process. Since Burkitts lymphoma has high propensity to spread to the central nervous system (lymphomatous meningitis), intrathecal chemotherapy with methotrexate and/or ARA-C and/or prednisolone is given alongside with systemic chemotherapy.
Chemotherapy
- cyclophosphamide
- doxorubicin
- vincristine
- methotrexate
- cytarabine
- ifosfamide
- etoposide
- rituximab
Other treatments for Burkitt's lymphoma include immunotherapy, bone marrow transplants, stem cell transplant, surgery to remove the tumor, and radiotherapy.
Clonal rearrangements of the T-cell receptor (TCR) genes are a necessary condition for the diagnosis of this disease. The gene for the β chain of the TCR is found to be rearranged more often than the γ chain. of the TCR.
A new method developed using data from the M.D. Anderson Cancer Center found that a haemoglobin level of 2.5 x 10/L, >0% immature myeloid cells, >10% bone marrow blasts causes a reduced overall survival. This data allows cases of CMML to be stratified into low, intermediate-1, intermediate-2 and high risk groups. These groups have median survival times of 24, 15, 8 and 5 months respectively.
Treatment in DOCK8 deficiency focuses on preventing and treating infections. Broad-spectrum antibiotics are a common mode of treatment when infection is present, though some infections (like lung abscesses) require surgical treatment. Pneumatocele may be treated with surgery, but the benefit is unclear.
Surgical treatment is also recommended for skin abscesses, along with topical and systemic antibiotics and antifungals.
Long-term treatment with systemic antibiotics, including trimethoprim/sulfamethoxazole, penicillins, and cephalosporins, is effective in preventing skin and lung infections. Other treatments used in DOCK8 deficiency include sodium cromoglycate, which improves white blood cell function, and isotretinoin, which improves skin condition.
Sometimes, Intravenous immunoglobulin is used as a treatment, but its benefits have not been proven. Levamisole is also ineffective. Mixed clinical outcomes have been found with interferon gamma and omalizumab. Though early research on hematopoietic stem cell transplantation was equivocal, later research has shown it to improve immune function. Two patients have been cured by bone marrow transplantation. Cyclosporine A is a current topic of research; preliminary results have shown it to be effective.
Treatments used to combat autoimmune diseases and conditions caused by eosinophils include:
- corticosteroids – promote apoptosis. Numbers of eosinophils in blood are rapidly reduced
- monoclonal antibody therapy – e.g., mepolizumab or reslizumab against IL-5, prevents eosinophilopoiesis
- antagonists of leukotriene synthesis or receptors
- imatinib (STI571) – inhibits PDGF-BB in hypereosinophilic leukemia
Monoclonal antibodies such as dupilumab and lebrikizumab target IL-13 and its receptor, which reduces eosinophilic inflammation in pateints with asthma due to lowering the number of adhesion molecules present for eosinophils to bind to, thereby decreasing inflammation. Mepolizumab and benralizumab are other treatment options that target the alpha subunit of the IL-5 receptor, thereby inhibiting its function and reducing the number of developing eosinophils as well as the number of eosinophils leading to inflammation through antibody-dependent cell-mediated cytotoxicity and eosinophilic apoptosis.
Controversy remains today whether this disorder is a subtype of acute myeloid leukemia or myelodysplastic syndromes; however, it is currently classified as a form of AML.
Due to its rarity, no comprehensive treatment studies on eosinophilic myocarditis have been conducted. Small studies and case reports have directed efforts towards: a) supporting cardiac function by relieving heart failure and suppressing life-threatening abnormal heart rhythms; b) suppressing eosinophil-based cardiac inflammation; and c) treating the underlying disorder. In all cases of symptomatic eosinophilic myocarditis that lack specific treatment regimens for the underlying disorder, available studies recommend treating the inflammatory component of this disorder with non-specific immunosuppressive drugs, principally high-dosage followed by slowly-tapering to a low-dosage maintenance corticosteroid regimens. It is recommended that afflicted individuals who fail this regimen or present with cardiogenic shock be treated with other non-specific immunosuppressive drugs viz., azathioprine or cyclophosphamide, as adjuncts to, or replacements for, corticosteroids. However, individuals with an underlying therapeutically accessible disease should be treated for this disease; in seriously symptomatic cases, such individuals may be treated concurrently with a corticosteroid regimen. Examples of diseases underlying eosinophilic myocarditis that are recommended for treatments directed at the underlying disease include:
- Infectious agents: specific drug treatment of helminth and protozoan infections typically takes precedence over non-specific immunosuppressive therapy, which, if used without specific treatment, could worsen the infection. In moderate-to-severe cases, non-specific immunosuppression is used in combination with specific drug treatment.
- Toxic reactions to ingested agents: discontinuance of the ingested agent plus corticosteroids or other non-specific immunosuppressive regimens.
- Clonal eosinophilia caused by mutations in genes that are highly susceptible to tyrosine kinase inhibitors such as "PDGFRA", "PDGFRB", or possibly "FGFR1": first generation tyrosine kinase inhibitors (e.g. imatinib) are recommended for the former two mutations; a later generation tyrosine kinase inhibitors, ponatinib, alone or combined with bone marrow transplantation, may be useful for treating the FGFR1 mutations.
- Clonal hypereosinophilia due to mutations in other genes or primary malignancies: specific treatment regimens used for these pre-malignant or malignant diseases may be more useful and necessary than non-specific immunosuppression.
- Allergic and autoimmune diseases: non-specific treatment regimens used for these diseases may be useful in place of a simple corticosteroid regimen. For example, eosinophilic granulomatosis with polyangiitis can be successfully treated with mepolizumab.
- Idiopathic hypereosinphilic syndrome and lymphocyte-variant hypereosinophilia: corticosteroids; for individuals with these hypereosinophilias that are refractory to or break through corticosteroid therapy and individuals requiring corticosteroid-sparing therapy, recommended alternative drug therapies include hydroxyurea, Pegylated interferon-α, and either one of two tyrosine kinase inhibitors viz., imatinib and mepolizumab).
Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative neoplasm that features a persistent neutrophilia in peripheral blood, myeloid hyperplasia in bone marrow, hepatosplenomegaly, and the absence of the Philadelphia chromosome or a BCR/ABL fusion gene.
Treatment with dose-adjusted EPOCH with rituximab has shown promising initial results in a small series of patients (n=17), with a 100% response rate, and 100% overall survival and progression-free survival at 28 months (median follow-up).
The majority (90%) of cases have not had detectable cytogenetic abnormalities. Most importantly, the Philadelphia chromosome and other BCR/ABL fusion genes are not detected.