Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A craniofacial team is routinely used to treat this condition. The majority of hospitals still use craniofacial teams; yet others are making a shift towards dedicated cleft lip and palate programs. While craniofacial teams are widely knowledgeable about all aspects of craniofacial conditions, dedicated cleft lip and palate teams are able to dedicate many of their efforts to being on the cutting edge of new advances in cleft lip and palate care.
Many of the top pediatric hospitals are developing their own CLP clinics in order to provide patients with comprehensive multi-disciplinary care from birth through adolescence. Allowing an entire team to care for a child throughout their cleft lip and palate treatment (which is ongoing) allows for the best outcomes in every aspect of a child's care. While the individual approach can yield significant results, current trends indicate that team based care leads to better outcomes for CLP patients. .
Cleft lip and palate is very treatable; however, the kind of treatment depends on the type and severity of the cleft.
Most children with a form of clefting are monitored by a "cleft palate team" or "craniofacial team" through young adulthood. Care can be lifelong. Treatment procedures can vary between craniofacial teams. For example, some teams wait on jaw correction until the child is aged 10 to 12 (argument: growth is less influential as deciduous teeth are replaced by permanent teeth, thus saving the child from repeated corrective surgeries), while other teams correct the jaw earlier (argument: less speech therapy is needed than at a later age when speech therapy becomes harder). Within teams, treatment can differ between individual cases depending on the type and severity of the cleft.
There are several options for treatment of mouth anomalies like Tessier cleft number 2-3-7 . These clefts are also seen in various syndromes like Treacher Collins syndrome and hemifacial microsomia, which makes the treatment much more complicated. In this case, treatment of mouth anomalies is a part of the treatment of the syndrome.
The timing of surgical interventions is debatable. Parents have to decide about their child in a very vulnerable time of their parenthood. Indications for early treatment are progressive deformities, such as syndactyly between index and thumb or transverse bones between the digital rays. Other surgical interventions are less urgent and can wait for 1 or 2 years.
When surgery is indicated, the choice of treatment is based on the classification. Table 4 shows the treatment of cleft hand divided into the classification of Manske and Halikis.
Techniques described by Ueba, Miura and Komada and the procedure of Snow-Littler are guidelines; since clinical and anatomical presentation within the types differ, the actual treatment is based on the individual abnormality.
Table 4: Treatment based on the classification of Manske and Halikis
The goals of treatment in infants with Robin sequence focus upon breathing and feeding, and optimizing growth and nutrition despite the predisposition for breathing difficulties. If there is evidence of airway obstruction (snorty breathing, apnea, difficulty taking a breath, or drops in oxygen), then the infant should be placed in the sidelying or prone position, which helps bring the tongue base forward in many children. One study of 60 infants with PRS found that 63% of infants responded to prone positioning (Smith and Senders, 2006, Int J Pediatr Oto). 53% of the infants in this study required some form of feeding assistance, either nasogastric tube or gastrostomy tube feedings (feeding directly into the stomach). In a separate study of 115 children with the clinical diagnosis of PRS managed at 2 different hospitals in Boston (Evans et al., 2006, In J Pediatr Oto), respiratory distress was managed successfully in 56% without an operation (either by prone positioning, short term intubation, or placement of a nasopharyngeal airway). In this study, gastrostomy tube feeding were placed in 42% of these infants due to feeding difficulties.
Gastroesophageal reflux (GERD) seems to be more prevalent in children with Robin sequence (Dudkiewicz, March 2000, CPCJ). Because reflux of acidic contents in the posterior pharynx and upper airway can intensify the symptoms of Robin sequence, specifically by worsening airway obstruction, it is important to maximize treatment for GER in children with PRS and reflux symptoms. Treatment may include upright positioning on a wedge (a tucker sling may be needed if the baby is in the prone position), small and frequent feedings (to minimize vomiting), and/or pharmacotherapy (such as proton pump inhibitors).
In nasopharyngeal cannulation (or placement of the nasopharyngeal airway or tube), the infant is fitted with a blunt-tipped length of surgical tubing (or an endotracheal tube fitted to the child), which is placed under direct visualization with a laryngoscope, being inserted into the nose and down the pharynx (or throat), ending just above the vocal cords. Surgical threads fitted through holes in the outside end of the tube are attached to the cheek with a special skin-like adhesive material called 'stomahesive', which is also wrapped around the outside end of the tube (but not over the opening at the end) to keep the tube in place. This tube or cannula, which itself acts as an airway, primarily acts as a sort of "splint" which maintains patency of the airway by keeping the tongue form falling back on the posterior pharyngeal wall and occluding the airway, therefore preventing airway obstruction, hypoxia and asphyxia. Nasopharyngeal airways are not available at every center, however, when available, nasopharyngeal cannulation should be favored over the other treatments mentioned in this article, as it is far less invasive; it allows the infant to feed without the further placement of a nasogastric tube. This treatment may be utilized for multiple months, until the jaw has grown enough so that the tongue assumes a more normal position in the mouth and airway (at birth, the jaws of some infants are so underdeveloped that only the tip of the tongue can be seen when viewed in the throat). Some institutions discharge the infant home with a nasopharyngeal tube in place (Citation: KD Anderson, May 2007, CPCJ).
Distraction osteogenesis (DO), also called a "Mandibular Distraction", can be used to correct abnormal smallness of one or both jaws seen in patients with Robin Sequence. Enlargement of the lower jaw brings the tongue forward, preventing it from obstructing the upper airway. The process of DO begins with preoperative assessment. Doctors use three-dimensional imaging to identify the parts of the patient's facial skeleton that need repositioning and determine the magnitude and direction of distraction. They may then select the most appropriate distraction device or sometimes have custom devises fabricated. When possible, intraoral devices are used.
DO surgery starts with an osteotomy (surgical division or sectioning of bone) followed by the distraction device being placed under the skin and across the osteotomy. A few days later, the two ends of the bone are very gradually pulled apart through continual adjustments that are made to the device by the parents at home. The adjustments are made by turning a small screw that protrudes through the skin, usually at a rate of 1 mm per day. This gradual distraction leads to formation of new bone between the two ends. After the process is complete, the osteotomy is allowed to heal over a period of six to eight weeks. A small second surgery is then performed to remove the device.
The cleft palate is generally repaired between the ages of 6½ months and 2 years by a plastic or maxillofacial surgeon. In many centres there is now a cleft lip and palate team comprising both of these specialties, as well as a coordinator, a speech and language therapist, an orthodontist, sometimes a psychologist or other mental health specialist, an audiologist, an otorhinolaryngologist (ENT surgeon) and nursing staff. The glossoptosis and micrognathism generally do not require surgery, as they improve to some extent unaided, though the mandibular arch remains significantly smaller than average. In some cases jaw distraction is needed to aid in breathing and feeding. Lip-tongue attachment is performed in some centres, though its efficacy has been recently questioned.
There is no single strategy for treatment of facial clefts, because of the large amount of variation in these clefts. Which kind of surgery is used depends on the type of clefting and which structures are involved. There is much discussion about the timing of reconstruction of bone and soft tissue. The problem with early reconstruction is the recurrence of the deformity due to the intrinsic restricted growth. This requires additional operations at a later age to make sure all parts of the face are in proportion. A disadvantage of early bone reconstruction is the chance to damage the tooth germs, which are located in the maxilla, just under the orbit. The soft tissue reconstruction can be done at an early age, but only if the used skin flap can be used again during a second operation. The timing of the operation depends on the urgency of the underlying condition. If the operation is necessary to function properly, it should be done at early age. The best aesthetic result is achieved when the incisions are positioned in areas which attract the least attention (they cover up the scars). If, however, the function of a part of the face isn’t damaged, the operation depends on psychological factors and the facial area of reconstruction.
The treatment plan of a facial cleft is planned right after diagnosis. This plan includes every operation needed in the first 18 years of the patients life to reconstruct the face fully.
In this plan, a difference is made between problems that need to be solved to improve the health of the patient (coloboma) and problems that need to be solved for a better cosmetic result (hypertelorism).
The treatment of the facial clefts can be divided in different areas of the face: the cranial anomalies, the orbital and eye anomalies, the nose anomalies, the midface anomalies and the mouth anomalies.
Simple surgical excision is curative. The recommended treatment is that the skin is peeled off the extra-auricular tissue and protruding cartilage remnants are trimmed. Normal appearance is achieved in majority of cases. The reconstruction successful in true cases of accessory auricle, as it also is in individuals with auricular appendages.
Lip pits may be surgically removed either for aesthetic reasons or discomfort due to inflammation caused by bacterial infections or chronic saliva excretion, though spontaneous shrinkage of the lip pits has occurred in some rare cases. Chronic inflammation has also been reported to cause squamous-cell carcinoma. It is essential to completely remove the entire lip pit canal, as mucoid cysts can develop if mucous glands are not removed. A possible side effect of removing the lip pits is a loose lip muscle. Other conditions associated with VWS, including CL, CP, congenital heart defects, etc. are surgically corrected or otherwise treated as they would be if they were non-syndromic.
Because newborns can breathe only through their nose, the main goal of postnatal treatment is to establish a proper airway. Primary surgical treatment of FND can already be performed at the age of 6 months, but most surgeons wait for the children to reach the age of 6 to 8 years. This decision is made because then the neurocranium and orbits have developed to 90% of their eventual form. Furthermore, the dental placement in the jaw has been finalized around this age.
The treatment of pentalogy of Cantrell is directed toward the specific symptoms that are apparent in each individual. Surgical intervention for cardiac, diaphragmatic and other associated defects is necessary. Affected infants will require complex medical care and may require surgical intervention. In most cases, pentalogy of Cantrell is fatal without surgical intervention. However, in some cases, the defects are so severe that the individual dies regardless of the medical or surgical interventions received.
The specific treatment strategy will vary from one infant to another based upon various factors, including the size and type of abdominal wall defect, the specific cardiac anomalies that are present, and the particular type of ectopia cordis. Surgical procedures that may be required shortly after birth include repair of an omphalocele. At this time, physicians may also attempt to repair certain other defects including defects of the sternum, diaphragm and the pericardium.
In severe cases, some physicians advocate for a staged repair of the defects associated with pentalogy of Cantrell. The initial operation immediately after birth provides separation of the peritoneal and pericardial cavities, coverage of the midline defect and repair of the omphalocele. After appropriate growth of the thoracic cavity and lungs, the second stage consists of the repair of cardiac defects and return of the heart to the chest. Eventually, usually by age 2 or 3, reconstruction of the lower sternum or epigastrium may be necessary.
Other treatment of pentalogy of Cantrell is symptomatic and supportive.
Children affected with PRS usually reach full development and size. However, it has been found internationally that children with PRS are often slightly below average size, raising concerns of incomplete development due to chronic hypoxia related to upper airway obstruction as well as lack of nutrition due to early feeding difficulties or the development of an oral aversion. However, the general prognosis is quite good once the initial breathing and feeding difficulties are overcome in infancy. Most PRS babies grow to lead a healthy and normal adult life.
The most important medical problems are difficulties in breathing and feeding. Affected infants very often need assistance with feeding, for example needing to stay in a lateral(on the side) or prone(on the tummy) position which helps bring the tongue forward and opens up the airway. Babies with a cleft palate will need a special cleft feeding device (such as the Haberman Feeder). Infants who are unable to take in enough calories by mouth to ensure growth may need supplementation with a nasogastric tube. This is related to the difficulty in forming a vacuum in the oral cavity related to the cleft palate, as well as to breathing difficulty related to the posterior position of the tongue. Given the breathing difficulties that some babies with PRS face, they may require more calories to grow (as working of breathing is somewhat like exercising for an infant). Infants, when moderately to severely affected, may occasionally need nasopharyngeal cannulation, or placement of a nasopharyngeal tube to bypass the airway obstruction at the base of the tongue. in some places, children are discharged home with a nasopharyngeal tube for a period of time, and parents are taught how to maintain the tube. Sometimes endotracheal intubation or tracheostomy may be indicated to overcome upper respiratory obstruction. In some centers, a tongue lip adhesion is performed to bring the tongue forward, effectively opening up the airway. Mandibular distraction can be effective by moving the jaw forward to overcome the upper airway obstruction caused by the posterior positioning of the tongue.
Given that a proportion of children with Robin sequence will have Stickler syndrome, it is important that a child with PRS have an evaluation by an optometrist or ophthalmologist in the first year of life looking for myopia that can be seen in Stickler syndrome. Because retinal detachment that can occur in Stickler syndrome is a leading cause of blindness in children, it is very important to recognize and be thoughtful of this diagnosis.
Structural nasal deformities are corrected during or shortly after the facial bipartition surgery. In this procedure, bone grafts are used to reconstruct the nasal bridge. However, a second procedure is often needed after the development of the nose has been finalized (at the age of 14 years or even later).
Secondary rhinoplasty is based mainly on a nasal augmentation, since it has been proven better to add tissue to the nose than to remove tissue. This is caused by the minimal capacity of contraction of the nasal skin after surgery.
In rhinoplasty, the use of autografts (tissue from the same person as the surgery is performed on) is preferred. However, this is often made impossible by the relative damage done by previous surgery. In those cases, bone tissue from the skull or the ribs is used. However, this may give rise to serious complications such as fractures, resorption of the bone, or a flattened nasofacial angle.
To prevent these complications, an implant made out of alloplastic material could be considered. Implants take less surgery time, are limitlessly available and may have more favorable characteristics than autografts. However, possible risks are rejection, infection, migration of the implant, or unpredictable changes in the physical appearance in the long term.
At the age of skeletal maturity, orthognathic surgery may be needed because of the often hypoplastic maxilla. Skeletal maturity is usually reached around the age of 13 to 16. Orthognathic surgery engages in diagnosing and treating disorders of the face and teeth- and jaw position.
Treatment of a laryngeal cleft depends on the length and resulting severity of symptoms. A shallow cleft (Type I) may not require surgical intervention. Symptoms may be able to be managed by thickening the infant's feeds. If symptomatic, Type I clefts can be sutured closed or injected with filler as a temporary fix to determine if obliterating the cleft is beneficial and whether or not a more formal closure is required at a later date. Slightly longer clefts (Type II and short Type III) can be repaired endoscopically. Short type IV clefts extending to within 5 mm below the innominate artery can be repaired through the neck by splitting the trachea vertically in the midline and suturing the back layers of the esophagus and trachea closed. A long, tapered piece of rib graft can be placed between the esophageal and tracheal layers to make them rigid so the patient will not require a tracheotomy after the surgery and to decrease chances of fistula postoperatively. Long Type IV clefts extending further than 5 mm below the innominate artery cannot be reached with a vertical incision in the trachea, and therefore are best repaired through cricotracheal resection. This involves separating the trachea from the cricoid cartilage, leaving the patient intubated through the trachea, suturing each of the esophagus and the back wall of the trachea closed independently, and then reattaching the trachea to the cricoid cartilage. This prevents the need for pulmonary bypass or extracorporeal membrane oxygenation.
Conservative (i.e. no treatment), or surgical . With surgical excision, recurrence is common, usually due to incomplete excision. Often, the tracts of the cyst will pass near important structures, such as the internal jugular vein, carotid artery, or facial nerve, making complete excision impractical.
In rare cases, if diagnosed in utero, fetal surgery may be considered to save a limb which is in danger of amputation or other deformity. This typically would not be attempted if neither vital organs nor the umbilical cord were affected. This operation has been successfully performed on fetuses as young as 22 weeks. The surgery took place at Melbourne's Monash Medical Centre in Australia and is believed to be the earliest surgery of its type, as surgeons usually hold off on operating until the woman is in week 28 of gestation. There are also several facilities in the United States that have performed successful amniotic band release surgery.
Treatment usually occurs after birth and where plastic and reconstructive surgery is considered to treat the resulting deformity. Plastic surgery ranges from simple to complex depending on the extent of the deformity. Physical and occupational therapy may be needed long term.
Prosthetics may help some ABS sufferers to live more functional lives. The price and complexity of these prosthetics vary dramatically, but advances in 3-D printing have helped to increase the availability of artificial fingers while reducing their cost of production.
A common method to treat Velopharyngeal insufficiency is pharyngeal flap surgery, where tissue from the back of the mouth is used to close part of the gap. Other ways of treating velopharyngeal insufficiency is by placing a posterior nasopharyngeal wall implant (commonly cartilage or collagen) or type of soft palate lengthening procedure (i.e. VY palatoplasty).
The use of orthotic bracing, pioneered by Sydney Haje as of 1977, is finding increasing acceptance as an alternative to surgery in select cases of pectus carinatum. In children, teenagers, and young adults who have pectus carinatum and are motivated to avoid surgery, the use of a customized chest-wall brace that applies direct pressure on the protruding area of the chest produces excellent outcomes. Willingness to wear the brace as required is essential for the success of this treatment approach. The brace works in much the same way as orthodontics (braces that correct the alignment of teeth). The brace consists of front and back compression plates that are anchored to aluminum bars. These bars are bound together by a tightening mechanism which varies from brace to brace. This device is easily hidden under clothing and must be worn from 14 to 24 hours a day. The wearing time varies with each brace manufacturer and the managing physicians protocol, which could be based on the severity of the carinatum malformation (mild moderate severe) and if it is symmetric or asymmetric.
Depending on the manufacturer and/or the patient's preference, the brace may be worn on the skin or it may be worn over a body 'sock' or sleeve called a Bracemate, specifically designed to be worn under braces. A physician or orthotist or brace manufacturer's representative can show how to check to see if the brace is in correct position on the chest.
Bracing is becoming more popular over surgery for pectus carinatum, mostly because it eliminates the risks that accompany surgery. The prescribing of bracing as a treatment for pectus carinatum has 'trickled down' from both paediatric and thoracic surgeons to the family physician and pediatricians again due to its lower risks and well-documented very high success results. The pectus carinatum guideline of 2012 of the American Pediatric Surgical Association has stated: "As reconstructive therapy for the compliant pectus [carinatum] malformation, nonoperative compressive orthotic bracing is usually an appropriate first line of therapy as it does not preclude the operative option. For appropriate candidates, orthotic bracing of chest wall malformations can reasonably be expected to prevent worsening of the malformation and often results in a lasting correction of the malformation. Orthotic bracing is often successful in prepubertal children whose chest wall is compliant. Expert opinion suggests that the noncompliant chest wall malformation or significant asymmetry of the pectus carinatum malformation caused by a concomitant excavatum-type malformation may not respond to orthotic bracing."
Regular supervision during the bracing period is required for optimal results. Adjustments may be needed to the brace as the child grows and the pectus improves.
The "lipofilling" technique consists of sucking fat from the patient using a syringe with a large gauge needle (usually from the abdomen or the outer thighs), then after centrifugation, the fat cells are re-injected beneath the skin into whichever hollow it is needed to fill. This technique is primarily used to correct small defects which may persist after conventional surgical treatment.
An alternative to surgery, the "vacuum bell", was described in 2006; the procedure is also referred to as treatment by "cup suction". It consists of a bowl shaped device which fits over the caved-in area; the air is then removed by the use of a hand pump. The vacuum created by this lifts the sternum upwards, lessening the severity of the deformity. It has been proposed as an alternative to surgery in less severe cases. Once the defect visually disappears, two additional years of use of the vacuum bell is required to make what may be a permanent correction. The treatment, in combination with physiotherapy exercises, has been judged by some as "a promising useful alternative" to surgery provided the thorax is flexible; the duration of treatment that is required has been found to be "directly linked to age, severity and the frequency of use". Long-term results are still lacking.
The vacuum bell can also be used in preparation to surgery.
Many of the congenital malformations found with Malpuech syndrome can be corrected surgically. These include cleft lip and palate, omphalocele, urogenital and craniofacial abnormalities, skeletal deformities such as a caudal appendage or scoliosis, and hernias of the umbillicus. The primary area of concern for these procedures applied to a neonate with congenital disorders including Malpuech syndrome regards the logistics of anesthesia. Methods like tracheal intubation for management of the airway during general anesthesia can be hampered by the even smaller, or maldeveloped mouth of the infant. For regional anesthesia, methods like spinal blocking are more difficult where scoliosis is present. In a 2010 report by Kiernan et al., a four-year-old girl with Malpuech syndrome was being prepared for an unrelated tonsillectomy and adenoidectomy. While undergoing intubation, insertion of a laryngoscope, needed to identify the airway for the placement of the endotracheal tube, was made troublesome by the presence of micrognathia attributed to the syndrome. After replacement with a laryngoscope of adjusted size, intubation proceeded normally. Successful general anesthesia followed.
A rare follow-up of a male with Malpuech syndrome was presented by Priolo et al. (2007). Born at term from an uneventful pregnancy and delivery, the infant underwent a surgical repair of a cleft lip and palate. No problems were reported with the procedure. A heart abnormality, atrial septal defect, was also apparent but required no intervention. At age three years, mental retardation, hyperactivity and obsessive compulsive disorder were diagnosed; hearing impairment was diagnosed at age six, managed with the use of hearing aids. Over the course of the decade that followed, a number of psychiatric evaluations were performed. At age 14, he exhibited a fear of physical contact; at age 15, he experienced a severe psychotic episode, characterized by agitation and a loss of sociosexual inhibition. This array of symptoms were treated pharmocologically (with prescription medications). He maintained a low level of mental deficiency by age 17, with moments of compulsive echolalia.
If a child finds it difficult to blow, pinching the nose can help regulate airflow. The child should then practice speech sounds without pinching the nose.
These exercises only work as treatments if hypernasality is small. Severe deviations should be treated surgically.
Sphincter pharyngoplasty is mostly used for horizontal clefts of the soft palate. Two small flaps are made on the left and right side of the entrance to the nasal cavity, attached to the back of the throat. For good results, the patient must have good palatal motion, as the occlusion of the nasal cavity is mainly carried out by muscles already existing and functioning.
For patients with severe pectus carinatum, surgery may be necessary. However bracing could and may still be the first line of treatment. Some severe cases treated with bracing may result in just enough improvement that patient is happy with the outcome and may not want surgery afterwards.
If bracing should fail for whatever reason then surgery would be the next step. The two most common procedures are the Ravitch technique and the Reverse Nuss procedure.
A modified Ravitch technique uses bioabsorbable material and postoperative bracing, and in some cases a diced rib cartilage graft technique.
The Nuss was developed by Donald Nuss at the Children's Hospital of the King's Daughters in Norfolk, Va. The Nuss is primarily used for Pectus Excavatum, but has recently been revised for use in some cases of PC, primarily when the malformation is symmetrical.
Amniotic band syndrome is considered an accidental event and it does not appear to be genetic or hereditary, so the likelihood of it occurring in another pregnancy is remote. The cause of amnion tearing is unknown and as such there are no known preventative measures.