Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antibiotics are commonly used to prevent secondary bacterial infection. There are no specific antiviral drugs in common use at this time for FVR, although one study has shown that ganciclovir, PMEDAP, and cidofovir hold promise for treatment. More recent research has indicated that systemic famciclovir is effective at treating this infection in cats without the side effects reported with other anti-viral agents. More severe cases may require supportive care such as intravenous fluid therapy, oxygen therapy, or even a feeding tube. Conjunctivitis and corneal ulcers are treated with topical antibiotics for secondary bacterial infection.
Lysine is commonly used as a treatment, however in a 2015 systematic review, where the authors investigated all clinical trials with cats as well as "in vitro" studies, concluded that lysine supplementation is not effective for the treatment or prevention of feline herpesvirus 1 infection.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
Most infections are mild and require no therapy or only symptomatic treatment. Because there is no virus-specific therapy, serious adenovirus illness can be managed only by treating symptoms and complications of the infection. Deaths are exceedingly rare but have been reported.
Neonatal infection treatment is typically started before the diagnosis of the cause can be confirmed.
Neonatal infection can be prophylactically treated with antibiotics. Maternal treatment with antibiotics is primarily used to protect against group B streptococcus.
Women with a history of HSV, can be treated with antiviral drugs to prevent symptomatic lesions and viral shedding that could infect the infant at birth. The antiviral medications used include acyclovir, penciclovir, valacyclovir, and famciclovir. Only very small amounts of the drug can be detected in the fetus. There are no increases in drug-related abnormalities in the infant that could be attributed to acyclovir. Long-term effects of antiviral medications have not been evaluated for their effects after growth and development of the child occurs. Neutropenia can be a complication of acyclovir treatment of neonatal HSV infection, but is usually transient. Treatment with immunoglobulin therapy has not been proven to be effective.
There is currently no specific treatment for the virus. A vaccine is available, but only experimentally. It has not been released to the public due to the risk it poses to already exposed birds.
Therapeutic intervention is limited to treating secondary infections. The individual bird can sometimes recover, but this is rare. If only the feathers are affected and the bird suffers no other symptoms, it can usually experience an acceptable quality of life. But if the bird's beak or nails are affected, veterinarians will recommend euthanasia.
The management of the disease lies thus mostly in prevention. Every new bird that enters a pen with other birds should be quarantined first and be tested for BFDV. Birds which are known carriers should not be introduced into new pens, especially not if those contain young birds.
There is a vaccine for FHV-1 available (ATCvet code: , plus various combination vaccines), but although it limits or weakens the severity of the disease and may reduce viral shedding, it does not prevent infection with FVR. Studies have shown a duration of immunity of this vaccine to be at least three years. The use of serology to demonstrate circulating antibodies to FHV-1 has been shown to have a positive predictive value for indicating protection from this disease.
A number of topical antivirals are effective for herpes labialis, including acyclovir, penciclovir, and docosanol.
Several antiviral drugs are effective for treating herpes, including acyclovir, valaciclovir (valacyclovir), famciclovir, and penciclovir. Acyclovir was the first discovered and is now available in generic. Valacyclovir is also available as a generic and is slightly more effective than aciclovir for reducing lesion healing time.
Evidence supports the use of acyclovir and valacyclovir in the treatment of herpes labialis as well as herpes infections in people with cancer. The evidence to support the use of acyclovir in primary herpetic gingivostomatitis is weaker.
Docosanol, a saturated fatty alcohol, is a safe and effective topical application that has been approved by the United States Food and Drug Administration for herpes labialis in adults with properly functioning immune systems. It is comparable in effectiveness to prescription topical antiviral agents. Due to its mechanism of action, there is little risk of drug resistance. The duration of symptoms can be shortened a bit if an antiviral, anesthetic, zinc oxide or zinc sulfate cream is applied soon after it starts.
Effective antiviral medications include acyclovir and penciclovir, which can speed healing by as much as 10%. Famciclovir or valacyclovir, taken in pill form, can be effective using a single day, high-dose application and is more cost effective and convenient than the traditional treatment of lower doses for 5–7 days.
Modern vaccination programmes aim not only to provide a high level of protection from clinical disease for the dam, but, crucially, to protect against viraemia and prevent the production of PIs. While the immune mechanisms involved are the same, the level of immune protection required for foetal protection is much higher than for prevention of clinical disease.
While challenge studies indicate that killed, as well as live, vaccines prevent foetal infection under experimental conditions, the efficacy of vaccines under field conditions has been questioned. The birth of PI calves into vaccinated herds suggests that killed vaccines do not stand up to the challenge presented by the viral load excreted by a PI in the field.
Safe and effective adenovirus vaccines were developed for adenovirus serotypes 4 and 7, but were available only for preventing ARD among US military recruits, and production stopped in 1996. Strict attention to good infection-control practices is effective for stopping transmission in hospitals of adenovirus-associated disease, such as epidemic keratoconjunctivitis. Maintaining adequate levels of chlorination is necessary for preventing swimming pool-associated outbreaks of adenovirus conjunctivitis.
The mainstay of eradication is the identification and removal of persistently infected animals. Re-infection is then prevented by vaccination and high levels of biosecurity, supported by continuing surveillance. PIs act as viral reservoirs and are the principal source of viral infection but transiently infected animals and contaminated fomites also play a significant role in transmission.
Leading the way in BVD eradication, almost 20 years ago, were the Scandinavian countries. Despite different conditions at the start of the projects in terms of legal support, and regardless of initial prevalence of herds with PI animals, it took all countries approximately 10 years to reach their final stages.
Once proven that BVD eradication could be achieved in a cost efficient way, a number of regional programmes followed in Europe, some of which have developed into national schemes.
Vaccination is an essential part of both control and eradication. While BVD virus is still circulating within the national herd, breeding cattle are at risk of producing PI neonates and the economic consequences of BVD are still relevant. Once eradication has been achieved, unvaccinated animals will represent a naïve and susceptible herd. Infection from imported animals or contaminated fomites brought into the farm, or via transiently infected in-contacts will have devastating consequences.
SuHV1 can be used to analyze neural circuits in the central nervous system (CNS). For this purpose the attenuated (less virulent) Bartha SuHV1 strain is commonly used and is employed as a retrograde and anterograde transneuronal tracer. In the retrograde direction, SuHV1-Bartha is transported to a neuronal cell body via its axon, where it is replicated and dispersed throughout the cytoplasm and the dendritic tree. SuHV1-Bartha released at the synapse is able to cross the synapse to infect the axon terminals of synaptically connected neurons, thereby propagating the virus; however, the extent to which non-synaptic transneuronal transport may also occur is uncertain. Using temporal studies and/or genetically engineered strains of SuHV1-Bartha, second, third, and higher order neurons may be identified in the neural network of interest.
Treatment depends on the type of opportunistic infection, but usually involves different antibiotics.
The medications prescribed for acute toxoplasmosis are the following:
- Pyrimethamine — an antimalarial medication
- Sulfadiazine — an antibiotic used in combination with pyrimethamine to treat toxoplasmosis
- Combination therapy is usually given with folic acid supplements to reduce incidence of thrombocytopaenia.
- Combination therapy is most useful in the setting of HIV.
- Clindamycin
- Spiramycin — an antibiotic used most often for pregnant women to prevent the infection of their children.
(other antibiotics, such as minocycline, have seen some use as a salvage therapy).
If infected during pregnancy, spiramycin is recommended in the first and early second trimesters while pyrimethamine/sulfadiazine and leucovorin is recommended in the late second and third trimesters.
Some vertically transmitted infections, such as toxoplasmosis and syphilis, can be effectively treated with antibiotics if the mother is diagnosed early in her pregnancy. Many viral vertically transmitted infections have no effective treatment, but some, notably rubella and varicella-zoster, can be prevented by vaccinating the mother prior to pregnancy.
If the mother has active herpes simplex (as may be suggested by a pap test), delivery by Caesarean section can prevent the newborn from contact, and consequent infection, with this virus.
IgG antibody may play crucial role in prevention of intrauterine infections and extensive research is going on for developing IgG-based therapies for treatment and vaccination.
To reduce neonatal infection, routine screening of pregnant women for HIV, hepatitis B, syphilis, and rubella susceptibility is required in the UK.
Treatment with an vaginal antibiotic wash prior to birth does not prevent infection with group B streptococcus bacteria. Breast milk protects against necrotizing enterocolitis.
Because GBS bacteria can colonize the lower reproductive tract of 30% of women, typically pregnant women are tested for this pathogen from 35 to 37 weeks of pregnancy. Before delivery treatment of the mother with antibiotics reduces the rate of neonatal infection. Prevention of the infection of the baby is done by treating the mother with penicillin. Since the adoption of this prophylatic treatment, infant mortality from GBS infection has decreased by 80%.
Mothers with symptomatic HSV and who are treated with antiviral prophylaxis are less prone to have an active, symptomatic case at the time of birth and it may be able to reduce the risk of passing on HSV during birth. Cesarean delivery reduces the risk of infection of the infant.
In people with latent toxoplasmosis, the cysts are immune to these treatments, as the antibiotics do not reach the bradyzoites in sufficient concentration.
The medications prescribed for latent toxoplasmosis are:
- Atovaquone — an antibiotic that has been used to kill "Toxoplasma" cysts inside AIDS patients
- Clindamycin — an antibiotic that, in combination with atovaquone, seemed to optimally kill cysts in mice
Individuals at higher risk are often prescribed prophylactic medication to prevent an infection from occurring. A patient's risk level for developing an opportunistic infection is approximated using the patient's CD4 T-cell count and sometimes other markers of susceptibility. Common prophylaxis treatments include the following:
The likelihood of the infection being spread can be reduced through behaviors such as avoiding touching an active outbreak site, washing hands frequently while the outbreak is occurring, not sharing items that come in contact with the mouth, and not coming into close contact with others (by avoiding kissing, oral sex, or contact sports).
Because the onset of an infection is difficult to predict, lasts a short period of time and heals rapidly, it is difficult to conduct research on cold sores. Though famciclovir improves lesion healing time, it is not effective in preventing lesions; valaciclovir and a mixture of acyclovir and hydrocortisone are similarly useful in treating outbreaks but may also help prevent them.
Acyclovir and valacyclovir by mouth are effective in preventing recurrent herpes labialis if taken prior to the onset of any symptoms or exposure to any triggers. Evidence does not support L-lysine.
Acute infection does not usually require treatment and most adults clear the infection spontaneously. Early antiviral treatment may be required in fewer than 1% of people, whose infection takes a very aggressive course (fulminant hepatitis) or who are immunocompromised. On the other hand, treatment of chronic infection may be necessary to reduce the risk of cirrhosis and liver cancer. Chronically infected individuals with persistently elevated serum alanine aminotransferase, a marker of liver damage, and HBV DNA levels are candidates for therapy. Treatment lasts from six months to a year, depending on medication and genotype. Treatment duration when medication is taken by mouth, however, is more variable and usually longer than one year.
Although none of the available drugs can clear the infection, they can stop the virus from replicating, thus minimizing liver damage. As of 2008, there are seven medications licensed for the treatment of infection in the United States. These include antiviral drugs lamivudine (Epivir), adefovir (Hepsera), tenofovir (Viread), telbivudine (Tyzeka) and entecavir (Baraclude), and the two immune system modulators interferon alpha-2a and PEGylated interferon alpha-2a (Pegasys). In 2015 the World Health Organization recommended tenofovir or entecavir as first-line agents. Those with current cirrhosis are in most need of treatment.
The use of interferon, which requires injections daily or thrice weekly, has been supplanted by long-acting PEGylated interferon, which is injected only once weekly. However, some individuals are much more likely to respond than others, and this might be because of the genotype of the infecting virus or the person's heredity. The treatment reduces viral replication in the liver, thereby reducing the viral load (the amount of virus particles as measured in the blood). Response to treatment differs between the genotypes. Interferon treatment may produce an e antigen seroconversion rate of 37% in genotype A but only a 6% seroconversion in type D. Genotype B has similar seroconversion rates to type A while type C seroconverts only in 15% of cases. Sustained e antigen loss after treatment is ~45% in types A and B but only 25–30% in types C and D.
The preventative measure of keeping cats inside in areas with high infection rates can prevent infection. Approved tick treatments for cats can be used but have been shown not to fully prevent tick bites.
The most often used treatments for cytauxzoonosis are imidocarb dipropionate and a combination of atovaquone and azithromycin. Although imidocarb has been used for years, it is not particularly effective. In a large study, only 25% of cats treated with this drug and supportive care survived. 60% of sick cats treated with supportive care and the combination of the anti-malarial drug atovaquone and the antibiotic azithromycin survived infection.
Quick referral to a veterinarian equipped to treat the disease may be beneficial. All infected cats require supportive care, including careful fluids, nutritional support, treatment for complications, and often blood transfusion.
Cats that survive the infection should be kept indoors as they can be persistent carriers after surviving infection and might indirectly infect other cats after being themselves bitten by a vector tick.
Several alternative therapies are claimed by their proponents to be helpful for including milk thistle, ginseng, and colloidal silver. However, no alternative therapy has been shown to improve outcomes in , and no evidence exists that alternative therapies have any effect on the virus at all.
Each type of vertically transmitted infection has a different prognosis. The stage of the pregnancy at the time of infection also can change the effect on the newborn.
Treatment of infections caused by "Bartonella" species include:
Some authorities recommend the use of azithromycin.