Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Research is focused on better ways to monitor disease in the wild, live animal diagnostic tests, developing vaccines, better ways to dispose of animals who died from the disease and to decontaminate the environment, where prions can persist in soils, and better ways to monitor the food supply. Deer harvesting and management issues are intertwined.
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of mule deer, white-tailed deer, elk (or "wapiti"), moose, and reindeer. As of 2016, CWD had only been found in members of the deer family. First recognized as a clinical "wasting" syndrome in 1967 in mule deer in a wildlife research facility in northern Colorado, USA, it was identified as a TSE in 1978 and has spread to free-ranging and captive populations in 23 US states and two Canadian provinces. CWD is typified by chronic weight loss leading to death. No relationship is known between CWD and any other TSE of animals or people.
Although reports in the popular press have been made of humans being affected by CWD, a study by the Centers for Disease Control and Prevention suggests, "[m]ore epidemiologic and laboratory studies are needed to monitor the possibility of such transmissions".
The epidemiological study further concluded, "[a]s a precaution, hunters should avoid eating deer and elk tissues known to harbor the CWD agent (e.g., brain, spinal cord, eyes, spleen, tonsils, lymph nodes) from areas where CWD has been identified".
It is expected that there will be no new cases of progressive inflammatory neuropathy since the process of aerosolizing the pig brains has been discontinued at all pork processing facilities.
François Madec, a French author, has written many recommendations on how reduce PMWS symptoms. They are mostly measures for disinfection, management, and hygiene, referred to as the "20 Madec Points" [Madec & Waddilove, 2002].
These measures have recently been expanded upon by Dr. David Barcellos, a professor at the Veterinary College in the Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil. He presented these points at "1st Universidade Federal do Rio Grande do Sul Symposium about swine management, reproduction, and hygiene".
He divided his points by pig growth stage, and they can be loosely summarized as:
- keep the gutters clean
- increase feeder space
- use pens or small cages with solid dividers
- avoid mixing pigs from different origins
- improve the quality of air
- decrease maximum capacity, giving each pig more room
- separate sick animals as soon as possible, and treat them in a hospital pen. If they do not respond to antibiotics in three days, they should be culled
- control access of people and other animals
- reduce invironmental stress factors such as gases and air currents
- use immunizations and preventive medications for secondary agents commonly associated with PMWS
In October 2007 an astute medical interpreter noticed similar neurological symptoms being reported by Spanish-speaking patients seeking treatment from different physicians at the Austin Medical Center, in Austin, Minnesota. Not only did these patients share similar neurological symptoms, they also worked at the same pork processing plant. Dr. Daniel LaChance, a physician at both the Austin Medical Center and the Mayo Clinic in nearby Rochester, Minnesota, was notified. He launched a request to area physicians to refer other patients with similar symptoms to him. The Minnesota Department of Health (MDH) was notified and began an investigation into the "outbreak." The MDH identified workers from two other pork processing plants in Indiana and Nebraska who also had parallel neurological complaints. Several agencies including the Occupational Safety and Health Administration (OSHA) and the Center for Disease Control and Prevention (CDC) were brought in to assist. Simultaneously investigations were conducted to rule out contagious disease, to locate the source or carrier, and to identify what exactly was causing these workers to develop these symptoms.
Removal from exposure was the first line of treatment. Due to progressive sensory loss and weakness, immunotherapy was often required. These treatments included intravenous methylprednisolone, oral prednisone, azathioprine, and/or immunoglobulin. All 24 patients improved, including 7 who received no treatment and 17 who required immunotherapy.
There continues to be a very practical problem with diagnosis of prion diseases, including BSE and CJD. They have an incubation period of months to decades during which there are no symptoms, even though the pathway of converting the normal brain PrP protein into the toxic, disease-related PrP form has started. At present, there is virtually no way to detect PrP reliably except by examining the brain using neuropathological and immunohistochemical methods after death. Accumulation of the abnormally folded PrP form of the PrP protein is a characteristic of the disease, but it is present at very low levels in easily accessible body fluids like blood or urine. Researchers have tried to develop methods to measure PrP, but there are still no fully accepted methods for use in materials such as blood.
In 2010, a team from New York described detection of PrP even when initially present at only one part in a hundred billion (10) in brain tissue. The method combines amplification with a novel technology called Surround Optical Fiber Immunoassay (SOFIA) and some specific antibodies against PrP. After amplifying and then concentrating any PrP, the samples are labelled with a fluorescent dye using an antibody for specificity and then finally loaded into a micro-capillary tube. This tube is placed in a specially constructed apparatus so that it is totally surrounded by optical fibres to capture all light emitted once the dye is excited using a laser. The technique allowed detection of PrP after many fewer cycles of conversion than others have achieved, substantially reducing the possibility of artefacts, as well as speeding up the assay. The researchers also tested their method on blood samples from apparently healthy sheep that went on to develop scrapie. The animals’ brains were analysed once any symptoms became apparent. The researchers could therefore compare results from brain tissue and blood taken once the animals exhibited symptoms of the diseases, with blood obtained earlier in the animals’ lives, and from uninfected animals. The results showed very clearly that PrP could be detected in the blood of animals long before the symptoms appeared.
Recent research from the University of Toronto and Caprion Pharmaceuticals has discovered one possible avenue that might lead to quicker diagnosis, a vaccine or possibly even treatment for prion diseases. The abnormally folded proteins that cause the disease have been found to expose a side chain of amino acids that the properly folded protein does not expose. Antibodies specifically coded to this side-chain amino acid sequence have been found to stimulate an immune response to the abnormal prions and leave the normal proteins intact.
Another idea involves using custom peptide sequences. Since some research suggests prions aggregate by forming beta barrel structures, work done "in vitro" has shown that peptides made up of beta barrel-incompatible amino acids can help break up accumulations of prion.
A third idea concerns genetic therapy, whereby the gene for encoding protease-resistant protein is considered to be an error in several species, and therefore something to be inhibited.
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of progressive, invariably fatal, conditions that affect the brain (encephalopathies) and nervous system of many animals, including humans. According to the most widespread hypothesis, they are transmitted by prions, though some other data suggest an involvement of a "Spiroplasma" infection. Mental and physical abilities deteriorate and myriad tiny holes appear in the cortex causing it to appear like a sponge (hence spongiform) when brain tissue obtained at autopsy is examined under a microscope. The disorders cause impairment of brain function, including memory changes, personality changes and problems with movement that worsen chronically.
Prion diseases of humans include Creutzfeldt–Jakob disease—which has four main forms, the sporadic (sCJD), the hereditary/familiar (fCJD), the iatrogenic (iCJD) and the variant form (vCJD)—Gerstmann–Sträussler–Scheinker syndrome, fatal familial insomnia, kuru, and the recently discovered variably protease-sensitive prionopathy. These conditions form a spectrum of diseases with overlapping signs and symptoms. TSEs in non-human mammals include scrapie in sheep, bovine spongiform encephalopathy (BSE)—popularly known as 'mad cow's disease'—in cattle and chronic wasting disease (CWD) in deer and elk. The variant form of Creutzfeldt–Jakob disease is caused by exposure to bovine spongiform encephalopathy prions.
Unlike other kinds of infectious disease, which are spread by agents with a DNA or RNA genome (such as virus or bacteria), the infectious agent in TSEs is believed to be a prion, thus being composed solely of protein material. Misshapen prion proteins carry the disease between individuals and cause deterioration of the brain. TSEs are unique diseases in that their aetiology may be genetic, sporadic, or infectious via ingestion of infected foodstuffs and via iatrogenic means (e.g., blood transfusion). Most TSEs are sporadic and occur in an animal with no prion protein mutation. Inherited TSE occurs in animals carrying a rare mutant prion allele, which expresses prion proteins that contort by themselves into the disease-causing conformation. Transmission occurs when healthy animals consume tainted tissues from others with the disease. In the 1980s and 1990s, bovine spongiform encephalopathy (BSE) spread in cattle in an epidemic fashion. This occurred because cattle were fed the processed remains of other cattle, a practice now banned in many countries. In turn, consumption (by humans) of bovine-derived foodstuff which contained prion-contaminated tissues resulted in an outbreak of the variant form of Creutzfeldt–Jakob disease in the 1990s and 2000s.
Prions cannot be transmitted through the air or through touching or most other forms of casual contact. However, they may be transmitted through contact with infected tissue, body fluids, or contaminated medical instruments. Normal sterilization procedures such as boiling or irradiating materials fail to render prions non-infective.
Treatment is with penicillin, ampicillin, tetracycline, or co-trimoxazole for one to two years. Any treatment lasting less than a year has an approximate relapse rate of 40%. Recent expert opinion is that Whipple's disease should be treated with doxycycline with hydroxychloroquine for 12 to 18 months. Sulfonamides (sulfadiazine or sulfamethoxazole) may be added for treatment of neurological symptoms.
Paratuberculosis or Johne's disease is a contagious, chronic and sometimes fatal infection that primarily affects the small intestine of ruminants. It is caused by the bacterium "Mycobacterium avium" subspecies "paratuberculosis". Infections normally affect ruminants (mammals that have four compartments of their stomachs, of which the rumen is one), but have also been seen in a variety of nonruminant species, including rabbits, foxes, and birds. Horses, dogs, and nonhuman primates have been infected experimentally. Paratuberculosis is found worldwide, with some states in Australia (where it is usually called bovine Johne's disease or BJD) as the only areas proven to be free of the disease.
Some sources define "paratuberculosis" by the lack of "Mycobacterium tuberculosis", rather than the presence of any specific infectious agent, leaving ambiguous the appropriateness of the term to describe Buruli ulcer or Lady Windermere syndrome.
In an endemic herd, only a minority of the animals develops clinical signs; most animals either eliminate the infection or become asymptomatic carriers. The mortality rate is about 1%, but up to 50% of the animals in the herd can be asymptomatically infected, resulting in losses in production. Once the symptoms appear, paratuberculosis is progressive and affected animals eventually die. The percentage of asymptomatic carriers that develop overt disease is unknown.
Antiretrovirals and anabolic steroids have been used to treat HIV wasting syndrome. Additionally, an increase in protein-rich foods such as peanut butter, eggs, and cheese can assist in controlling the loss of muscle mass.
Fumagillin has been used in the treatment.
Another agent used is albendazole.
Porcine circoviral disease (PCVD) and Porcine circovirus associated disease (PCVAD), is a disease seen in domestic pigs. This disease causes illness in piglets, with clinical signs including progressive loss of body condition, visibly enlarged lymph nodes, difficulty in breathing, and sometimes diarrhea, pale skin, and jaundice. PCVD is very damaging to the pig-producing industry and has been reported worldwide. PCVD is caused by porcine circovirus type 2 (PCV-2).
The North American industry endorses "PCVAD" and European use "PCVD" to describe this disease.
There is no standard course of treatment to slow or stop the progression of the disease. sIBM patients do not reliably respond to the anti-inflammatory, immunosuppressant, or immunomodulatory medications. Management is symptomatic. Prevention of falls is an important consideration. Specialized exercise therapy may supplement treatment to enhance quality of life. Physical therapy is recommended to teach the patient a home exercise program, to teach how to compensate during mobility-gait training with an assistive device, transfers and bed mobility.
Untreated, the disease has a mortality rate upwards of 90%. Cats treated in the early stages can have a recovery rate of 80–90%. Left untreated, the cats usually die from severe malnutrition or complications from liver failure. Treatment usually involves aggressive feeding through one of several methods.
Cats can have a feeding tube inserted by a veterinarian so that the owner can feed the cat a liquid diet several times a day. They can also be force-fed through the mouth with a syringe. If the cat stops vomiting and regains its appetite, it can be fed in a food dish normally. The key is aggressive feeding so the body stops converting fat in the liver. The cat liver has a high regeneration rate and the disease will eventually reverse assuming that irreparable damage has not been done to the liver.
The best method to combat feline hepatic lipidosis is prevention and early detection. Obesity increases the chances of onset. In addition, if a cat stops eating for 1–2 days, it should be taken to a vet immediately. The longer the disease goes untreated, the higher the mortality rate.
The treatment or management of cachexia depends on the underlying causes, the general prognosis and other person related factors. Reversible causes, underlying diseases and contributing factors are treated if possible and acceptable. A growing body of evidence supports the efficacy of (HMB) as a treatment for reducing, or even reversing, the loss of muscle mass, muscle function, and muscle strength that occurs in hypercatabolic disease states such as cachexia; consequently, it is recommended that both the prevention and treatment of muscle wasting conditions include supplementation with HMB, regular resistance exercise, and consumption of a high-protein diet. Progestins such as megestrol acetate are a treatment option in refractory cachexia with anorexia as a major symptom.
Cachexia occurs less frequently now in HIV/AIDS than in the past due to the advent of highly active antiretroviral therapy (HAART). Treatment involving different combinations for cancer cachexia is recommended in Europe, as a combination of nutrition, medication and non-drug-treatment may be more effective than monotherapy. Non-drug therapies which have been shown to be effective in cancer induced cachexia include nutritional counselling, psychotherapeutic interventions, and physical training. Anabolic-androgenic steroids like oxandrolone may be beneficial in cancer cachexia but their use is recommended for maximal 2 weeks since a longer duration of treatment increases the burden from side effects.
Other drugs that have been used or are being investigated in cachexia therapy, but which lack conclusive evidence of efficacy or safety, and are not generally recommended include:
- Thalidomide and cytokine antagonists
- Cannabinoids
- Omega-3 fatty acids, including eicosapentaenoic acid (EPA)
- Non-steroidal anti-inflammatory drugs
- Prokinetics
- Ghrelin and ghrelin receptor agonist
- Anabolic catabolic transforming agents such as MT-102
- Selective androgen receptor modulators
- Cyproheptadine
- Hydrazine
Medical marijuana has been allowed for the treatment of cachexia in some US states, such as Illinois, Maryland, Delaware, Nevada, Michigan, Washington, Oregon, California, Colorado, New Mexico, Arizona, Vermont, New Jersey, Rhode Island, Maine, and New York Hawaii and Connecticut.
There is insufficient evidence to support the use of oral fish oil for the management of cachexia associated with advanced cancer.
The disease can be treated only to slow down the development, by use of cyclosporine A and ACE inhibitors, but not stopped or cured.
Treatment is palliative, not curative (as of 2009).
Treatment options for lower limb weakness such as foot drop can be through the use of Ankle Foot Orthoses (AFOs) which can be designed or selected by an Orthotist based upon clinical need of the individual. Sometimes tuning of rigid AFOs can enhance knee stability.
In the treatment of polyneuropathies one must ascertain and manage the cause, among management activities are: weight decrease, use of a walking aid, and occupational therapist assistance. Additionally BP control in those with diabetes is helpful, while intravenous immunoglobulin is used for multifocal motor neuropathy.
According to Lopate, et al., methylprednisolone is a viable treatment for chronic inflammatory demyelinative polyneuropathy (which can also be treated with intravenous immunoglobulin) The author(s) also indicate that prednisone has greater adverse effects in such treatment, as opposed to intermittent (high-doses) of the aforementioned medication.
According to Wu, et al., in critical illness polyneuropathy supportive and preventive therapy are important for the affected individual, as well as, avoiding (or limiting) corticosteroids.
In terms of the management of spinal and bulbar muscular atrophy, no cure is known and treatment is supportive. Rehabilitation to slow muscle weakness can prove positive, though the prognosis indicates some individuals will require the use of a wheelchair in later stages of life.
Surgery may achieve correction of the spine, and early surgical intervention should be done in cases where prolonged survival is expected. Preferred nonsurgical treatment occurs due to the high rate of repeated dislocation of the hip.
Because lack of sialic acid appears to be part of the pathology of IBM caused by GNE mutations, clinical trials with sialic acid supplements, and with a precursor of sialic acid, N-Acetylmannosamine, have been conducted, and as of 2016 further trials were planned.
Only limited treatment options exist for patients with clinical cancer cachexia. Current strategy is to improve appetite by using appetite stimulants to ensure adequate intake of nutrients. Pharmacological interventions with appetite stimulants, nutrient supplementation, 5-HT antagonists and Cox-2 inhibitor have been used to treat cancer cachexia, but with limited effect.
Studies using a more calorie-dense (1.5 kcals/ml) and higher protein supplementation have suggested at least weight stabilization can be achieved, although improvements in lean body mass have not been observed in these studies.
Therapeutic strategies have been based on either blocking cytokines synthesis or their action. Thalidomide has been demonstrated to suppress TNF-alpha production in monocytes "in vitro" and to normalize elevated TNF-alpha levels "in vivo". A randomized, placebo-controlled trial in patients with cancer cachexia showed the drug was well tolerated and effective at attenuating loss of weight and lean body mass (LBM) in patients with advanced pancreatic cancer. An improvement in the LBM and improved quality of life were also observed in a randomized, double-blind trial using a protein and energy-dense, omega-3 fatty acids-enriched oral supplement, provided its consumption was equal or superior to 2.2 g of eicosapentaenoic acid per day. It is also through decreasing TNF-alpha production. However, data arising from a large, multicenter, double-blind, placebo-controlled trial indicate EPA administration alone is not successful in the treatment of weight loss in patients with advanced gastrointestinal or lung cancer.
Peripheral muscle proteolysis, as it occurs in cancer cachexia, serves to mobilize amino acids required for the synthesis of liver and tumor protein. Therefore, the administration of exogenous amino acids may theoretically serve as a protein-sparing metabolic fuel by providing substrates for both muscle metabolism and gluconeogenesis. Studies have demonstrated dietary supplementation with a specific combination of high protein, leucine and fish oil improves muscle function and daily activity and the immune response in cachectic tumor-bearing mice. In addition, β-hydroxy-β-methyl butirate derived from leucine catabolism used as a supplement in tumor-bearing rats prevents cachexia by modifying NF-κB expression.
A phase-2 study involving the administration of antioxidants, pharmaconutritional support, progestin (megestrol acetate and medroxyprogesterone acetate), and anticyclooxygenase-2 drugs, showed efficacy and safety in the treatment of patients with advanced cancer of different sites suffering cachexia. These data reinforce the use of the multitargeted therapies (nutritional supplementation, appetite stimulants, and physical activity regimen) in the treatment of cancer cachexia.
New studies indicate NSAIDS, like Sulindac, were found to significantly decrease cachexia.
Also studies have shown branched-chain amino acids can return the metabolism of a cachectic patient from catabolic-losing weight- to anabolic- increasing muscle, in over 55% of patients. Branched-chain amino acids consist primarily of leucine and valine. In a research paper published by the Indian J of Palliat Care, the effects the findings concluded that bcaa's interfere with brain serotonergic activity and inhibit the overexpression of critical muscular proteolytic pathways. The potential role of branched-chain amino acids as antianorexia and anticachexia agents was proposed many years ago, but experimental studies and clinical trials have since tested their ability to stimulate food intake and counteract muscle wasting in anorectic, weight-losing patients. In experimental models of cancer cachexia, BCAAs were able to induce a significant suppression in the loss of body weight, producing a significant increase in skeletal muscle wet weight[30] as well as in muscle performance and total daily activity.
The conditionally essential amino acid glutamine has been used as a component of oral supplementation to reverse cachexia in patients with advanced cancer or HIV/AIDS.
Proventricular dilatation disease (PDD) is a disease affecting psittacines (parrots). It was first recognized and described in 1978 by Dr. Hannis L. Stoddard. Since the first reported cases were involving species of macaw, the condition was termed macaw wasting syndrome.
As of November 2013, no identifiable cause for the disease had been found. Pathogenic bacteria did not seem to be present, and though the plague might be caused by a viral or fungal pathogen, no causal agent had been found. Each episode of plague might have a different cause.
Other possible causes of the condition that have been suggested include high sea temperatures, oxygen depletion and low salinity due to freshwater runoff. Research suggests that high water temperatures are indeed linked to the disease, increasing its incidence and virulence. The disease also seems more prevalent in sheltered waters than in open seas with much wave movement. One result of global warming is higher sea temperatures. There is a wave of unusually warm water along the west coast of the United States, which is where all of the sea stars are dying off. These may impact both on starfish and on echinoderm populations in general, and a ciliate protozoan parasite ("Orchitophrya stellarum") of starfish, which eats sperm and effectively emasculates male starfish, thrives at higher temperatures.
Research in 2014 showed that the cause of the disease is transmissible from one starfish to another and that the disease-causing agent is a microorganism in the virus-size range. The most likely candidate causal agent was found to be the sea star-associated densovirus (SSaDV), which was found to be in greater abundance in diseased starfish than in healthy ones.
Because "O. sericea" is both frequently encountered and relatively palatable to livestock, it is an important cause of economic losses in livestock production. Keeping livestock away from locoweed infested pasture in spring and fall when grass and other forbs are not actively growing is recommended. Another suggested remedy is to provide palatable supplemental nutrients if animals are to be kept in infested pasture. These remedies take into account livestock preference for locoweed during seasons when grass is dry and not very nutritious. Conditioned food aversion has been used experimentally to discourage livestock from eating it. In horses, a small study has shown promising results using lithium chloride as the aversive agent.