Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Chemical antimicrobials may be used by the clinician to help reduce the bacterial load in the diseased pocket.
"Among the locally administered adjunctive antimicrobials, the most positive results occurred for tetracycline, minocycline, metronidazole, and chlorhexidine. Adjunctive local therapy generally reduced PD levels...Whether such improvements, even if statistically significant, are clinically meaningful remains a question."
Minocycline is typically delivered via slim syringe applicators.
Chlorhexidine impregnated chips are also available.
Hydrogen peroxide is a naturally occurring antimicrobial that can be delivered directly to the gingival sulcus or periodontal pocket using a custom formed medical device called a Perio Tray. [Title = Custom Tray Application of Peroxide Gel as an Adjunct to Scaling and Root Planing in the Treatment of Periodontitis:
A Randomized, Controlled Three-Month Clinical Trial J Clin Dent 2012;23:48–56.]
Hydrogen peroxide gel was demonstrated to be effective in controlling the bacteria biofilm [Subgingival Delivery of Oral Debriding Agents: A Proof of Concept J Clin Dent 2011;22:149–158] The research shows that a direct application of hydrogen peroxide gel killed virtually all of the bacterial biofilm, was directly and mathematically delivered up to 9mm into periodontal pockets.
Long term randomized clinical trials need to be conducted to determine if regular routine scaling and polishing is clinically effective for reducing the risk of chronic periodontitis in healthy adults.
Lasers are increasingly being used in treatments for chronic periodontitis. However, there is some controversy over their use:
"No consistent evidence supports the efficacy of laser treatment as an adjunct to non-surgical periodontal treatment in adults with chronic periodontitis."
Treatment options include antibiotic therapy (not a permanent solution), endodontic (root canal) therapy, or extraction.
Periapical periodontitis (also termed apical periodontitis, AP, or periradicular periodontitis) is an acute or chronic inflammatory lesion around the apex of a tooth root which is usually caused by bacterial invasion of the pulp of the tooth. The term is derived from "peri-" meaning "around", "apical" referring to the apex of the root (the tip of the root), and "-itis" meaning a disease characterized by inflammation. Periapical periodontitis can be considered a sequela in the natural history of dental caries (tooth decay), irreversible pulpitis and pulpal necrosis, since it is the likely outcome of untreated dental caries, although not always. In some cases, periapical periodontitis can occur due to occlusal high spots post-restoration, endodontic root filling material extrusion or bacterial invasion and infection from a gingival communication (rather than a pulpal source). Periapical periodontitis may develop into a periapical abscess, where a collection of pus forms at the end of the root, the consequence of spread of infection from the tooth pulp (odontogenic infection), or into a periapical cyst, where an epithelial lined, fluid filled structure forms.
Physicians often prescribe the antibiotic trimethoprim-sulfamethoxazole to prevent bacterial infections. This drug also has the benefit of sparing the normal bacteria of the digestive tract. Fungal infection is commonly prevented with itraconazole, although a newer drug of the same type called voriconazole may be more effective. The use of this drug for this purpose is still under scientific investigation.
Interferon, in the form of interferon gamma-1b (Actimmune) is approved by the Food and Drug Administration for the prevention of infection in CGD. It has been shown to reduce infections in CGD patients by 70% and to decrease their severity. Although its exact mechanism is still not entirely understood, it has the ability to give CGD patients more immune function and therefore, greater ability to fight off infections. This therapy has been standard treatment for CGD for several years.
Management for an individual with chronic mucocutaneous candidiasis consists of the following(relapse occurs once treatment is ceased, in many cases):
Recommended treatments for most cases of sinusitis include rest and drinking enough water to thin the mucus. Antibiotics are not recommended for most cases.
Breathing low-temperature steam such as from a hot shower or gargling can relieve symptoms. There is tentative evidence for nasal irrigation. Decongestant nasal sprays containing oxymetazoline may provide relief, but these medications should not be used for more than the recommended period. Longer use may cause rebound sinusitis. It is unclear if nasal irrigation, antihistamines, or decongestants work in children with acute sinusitis.
Most sinusitis cases are caused by viruses and resolve without antibiotics. However, if symptoms do not resolve within 10 days, amoxicillin is a reasonable antibiotic to use first for treatment with amoxicillin/clavulanate being indicated when the person's symptoms do not improve after 7 days on amoxicillin alone. A 2012 Cochrane review, however, found only a small benefit between 7 and 14 days, and could not recommend the practice when compared to potential complications and risk of developing resistance. Antibiotics are specifically not recommended in those with mild / moderate disease during the first week of infection due to risk of adverse effects, antibiotic resistance, and cost.
Fluoroquinolones, and a newer macrolide antibiotic such as clarithromycin or a tetracycline like doxycycline, are used in those who have severe allergies to penicillins. Because of increasing resistance to amoxicillin the 2012 guideline of the Infectious Diseases Society of America recommends amoxicillin-clavulanate as the initial treatment of choice for bacterial sinusitis. The guidelines also recommend against other commonly used antibiotics, including azithromycin, clarithromycin, and trimethoprim/sulfamethoxazole, because of growing antibiotic resistance. The FDA recommends against the use of fluoroquinolones when other options are available due to higher risks of serious side effects.
A short-course (3–7 days) of antibiotics seems to be just as effective as the typical longer-course (10–14 days) of antibiotics for those with clinically diagnosed acute bacterial sinusitis without any other severe disease or complicating factors. The IDSA guideline suggest five to seven days of antibiotics is long enough to treat a bacterial infection without encouraging resistance. The guidelines still recommend children receive antibiotic treatment for ten days to two weeks.
Mucous membrane pemphigoid may be managed with medication (cyclophosphamide and prednisolone).
When treating allergic laryngitis, topical nasal steroids and immunotherapy have been found to be effective for allergic rhinitis. Antihistamines may also be helpful, but can create a dryness in the larynx. Inhaled steroids that are used for a long period can lead to problems with the larynx and voice.
A number of medications can be used to treat this disorder. Alpha blockers and/or antibiotics appear to be the most effective with NSAIDs such as ibuprofen providing lesser benefit.
- Treatment with antibiotics is controversial. Some have found benefits in symptoms while others have questioned the utility of a trial of antibiotics. Antibiotics are known to have anti-inflammatory properties and this has been suggested as an explanation for their partial efficacy in treating CPPS. Antibiotics such as fluoroquinolones, tetracyclines, and macrolides have direct anti-inflammatory properties in the absence of infection, blocking inflammatory chemical signals (cytokines) such as interleukin-1 (IL-1), interleukin-8 and tumor necrosis factor (TNF), which coincidentally are the same cytokines found to be elevated in the semen and EPS of men with chronic prostatitis.
- The effectiveness of alpha blockers (tamsulosin, alfuzosin) is questionable in men with CPPS. A 2006 meta-analysis found that they are moderately beneficial when the duration of therapy was at least 3 months.
- An estrogen reabsorption inhibitor such as mepartricin improves voiding, reduces urological pain and improves quality of life in patients with chronic non-bacterial prostatitis.
- Therapies that have not been properly evaluated in clinical trials although there is supportive anecdotal evidence include gabapentin, benzodiazepines, and amitriptyline.
Over time, the relapse rate is high, exceeding 50%. However, recent research indicates that combination therapies offer a better prognosis than antibiotics alone.
A 2007 study showed that repeated combination pharmacological therapy with antibacterial agents (ciprofloxacin/azithromycin), alpha-blockers (alfuzosin) and Serenoa repens extracts may eradicate infection in 83.9% of patients with clinical remission extending throughout a follow-up period of 30 months for 94% of these patients.
A 2014 study of 210 patients randomized into two treatment groups found that recurrence occurred within 2 months in 27.6% of the group using antibiotics alone (prulifloxacin 600 mg), but in only 7.8% of the group taking prulifloxacin in combination with Serenoa repens extract, Lactobacillus Sporogens and Arbutin.
Antibiotic therapy has to overcome the blood/prostate barrier that prevents many antibiotics from reaching levels that are higher than minimum inhibitory concentration. A blood-prostate barrier restricts cell and molecular movement across the rat ventral prostate epithelium. Treatment requires prolonged courses (4–8 weeks) of antibiotics that penetrate the prostate well. The fluoroquinolones, tetracyclines and macrolides have the best penetration. There have been contradictory findings regarding the penetrability of nitrofurantoin , quinolones (ciprofloxacin, levofloxacin), sulfas (Bactrim, Septra), doxycycline and macrolides (erythromycin, clarithromycin). This is particularly true for gram-positive infections.
In a review of multiple studies, Levofloxacin (Levaquin) was found to reach prostatic fluid concentrations 5.5 times higher than Ciprofloxacin, indicating a greater ability to penetrate the prostate.
Persistent infections may be helped in 80% of patients by the use of alpha blockers (tamsulosin (Flomax), alfuzosin), or long term low dose antibiotic therapy. Recurrent infections may be caused by inefficient urination (benign prostatic hypertrophy, neurogenic bladder), prostatic stones or a structural abnormality that acts as a reservoir for infection.
In theory, the ability of some strains of bacteria to form biofilms might be one factor amongst others to facilitate development of chronic bacterial prostatitis.
Escherichia coli extract and cranberry have a potentially preventive effect on the development of chronic bacterial prostatitis, while combining antibiotics with saw palmetto, lactobacillus sporogens and arbutin may lead to better treatment outcomes.
Bacteriophages hold promise as another potential treatment for chronic bacterial prostatatis.
The addition of prostate massage to courses of antibiotics was previously proposed as being beneficial and prostate massage may mechanically break up the biofilm and enhance the drainage of the prostate gland. However, in more recent trials, this was not shown to improve outcome compared to antibiotics alone.
Non-sedating antihistamines that block the histamine H1 receptors are the first line of therapy. First generation antihistamines such as diphenhydramine or hydroxyzine block both central and peripheral H1 receptors and can be sedating. Second generation antihistamines such as loratadine, cetirizine, or desloratadine selectively antagonize the peripheral H1 receptors and are less sedating, less anticholinergic, and generally preferred over the first generation antihistamines.
People who don’t respond to the maximum dose of H1 antihistamines may benefit from increasing the dose, then to switching to another non-sedating antihistamine, then to adding a leukotriene antagonist, then to using an older antihistamine, then to using systemic steroids and finally to using ciclosporin or omalizumab.
Oral glucocorticoids are effective in controlling symptoms of chronic hives however they have an extensive list of adverse effects such as adrenal suppression, weight gain, osteoporosis, hyperglycemia, etc. Therefore, their use should be limited to a couple of weeks. In addition, one study found that systemic glucocorticoids combined with antihistamines did not hasten the time to symptom control compared with antihistamines alone.
Transurethral needle ablation of the prostate (TUNA) has been shown to be ineffective in trials.
Besides skin care, skin protection, and an external treatment, severe and chronic cases of hand eczema often also require systemic treatment. Various preparations are available for this. For acute, severe episodes exhibiting blister formation, internal cortisone preparations, sometimes in combination with certain antibiotics, may be helpful in the short term. The active agent ciclosporin, which is approved for treatment of severely pronounced neurodermitis, may also be used for severe, atopic hand eczema. Other substances that suppress the immune system have also shown effectiveness in some cases. However, these substances are not approved for hand eczema.
In the last couple of years an internal medicine has been approved for the first time for the treatment of chronic hand eczema. This involves a derivative of vitamin A, called alitretinoin, which is also naturally present in the human body. Alitretinoin can be used to treat all forms of severe chronic hand eczema which have not reacted to external cortisone preparations. The effectiveness of this form of treatment has been tested extensively in clinical study programs and proven prior to its approval. The trial results showed that two thirds of patients did not suffer a recurrence 6 months after application of the medication, and that re-treatment is effective if hand eczema reoccurs. The duration of alitretinoin treatment is 3 to 6 months. During treatment and one month prior to beginning and one month after completion, women of childbearing-age must use contraceptives and also test for pregnancy each month since, as with all derivatives of vitamin A, the substance involved is teratogenic. Side effects mainly include temporary headaches during the initial days of treatment, as well as a possible increase in blood fat and cholesterol values. Regular laboratory tests of blood values are recommended to monitor this.
Phototherapy can be effective in the treatment of chronic hand eczema. However, not all dermatologists or dermatology clinics offer this form of therapy, and it involves extended periods of treatment for the patient. A period of four to six weeks should involve 3–4 radiation sessions. The most frequently applied form of light therapy is PUVA therapy. This first treats the hands with a cream that contains an ingredient that causes the skin to become light-sensitive, the hands are then irradiated with ultraviolet A light (UV-A). After two days of treatment, a pause of one day must occur. Due to possible risks such as premature skin aging or chronic light damage caused to the skin, phototherapy cannot be considered for the long term.
Depending on the severity of the symptoms, FLD can last from one to to weeks, or they can last for the rest of one’s life. Acute FLD has the ability to be treated because hypersensitivity to the antigens has not yet developed. The main treatment is rest and reducing the exposure to the antigens through masks and increased airflow in confined spaces where the antigens are present. Another treatment for acute FLD is pure oxygen therapy. For chronic FLD, there is no true treatment because the patient has developed hypersensitivity meaning their FLD could last the rest of their life. Any exposure to the antigens once hypersensitivity can set off another chronic reaction.
The treatment of juvenile arthritis includes medications, physical therapy, splints and in severe cases surgery. These treatments are focused on reducing swelling, relieving pain and maintaining full movement of joints. Children are encouraged to be involved in extra-curricular activities, physical activity when possible, and to live a "normal" life.
The different treatment options for management of chronic pancreatitis are medical measures, therapeutic endoscopy and surgery. Treatment is directed, when possible, to the underlying cause, and to relieve pain and malabsorption. Insulin dependent diabetes mellitus may occur and need long term insulin therapy. The abdominal pain can be very severe and require high doses of analgesics, sometimes including opiates. Alcohol cessation and dietary modifications (low-fat diet) are important to manage pain and slow the calcific process. Antioxidants may help but it is unclear if the benefits are meaningful.
Pancreatic enzyme replacement is often effective in treating the malabsorption and steatorrhea associated with chronic pancreatitis. Treatment of CP consists of administration of a solution of pancreatic enzymes with meals. Some patients do have pain reduction with enzyme replacement and since they are relatively safe, giving enzyme replacement to a chronic pancreatitis patient is an acceptable step in treatment for most patients. Treatment may be more likely to be successful in those without involvement of large ducts and those with idiopathic pancreatitis.
The only prevention for FLD is ventilating the work areas putting workers at risk and using face masks to filter out the antigens attempting to enter the lungs through the air.
First-line treatment for CIDP is currently intravenous immunoglobulin (IVIG) and other treatments include corticosteroids (e.g. prednisone), and plasmapheresis (plasma exchange) which may be prescribed alone or in combination with an immunosuppressant drug. Recent controlled studies show subcutaneous immunoglobin (SCIG) appears to be as effective for CIDP treatment as IVIG in most patients, and with fewer systemic side effects.
IVIG and plasmapheresis have proven benefit in randomized, double-blind, placebo-controlled trials. Despite less definitive published evidence of efficacy, corticosteroids are considered standard therapies because of their long history of use and cost effectiveness. IVIG is probably the first-line CIDP treatment, but is extremely expensive. For example, in the U.S., a single 65 g dose of Gamunex brand in 2010 might be billed at the rate of $8,000 just for the immunoglobulin—not including other charges such as nurse administration. Gamunex brand IVIG is the only U.S. FDA approved treatment for CIDP, as in 2008 Talecris, the maker of Gamunex, received orphan drug status for this drug for the treatment of CIDP.
Immunosuppressive drugs are often of the cytotoxic (chemotherapy) class, including rituximab (Rituxan) which targets B cells, and cyclophosphamide, a drug which reduces the function of the immune system. Ciclosporin has also been used in CIDP but with less frequency as it is a newer approach. Ciclosporin is thought to bind to immunocompetent lymphocytes, especially T-lymphocytes.
Non-cytotoxic immunosuppressive treatments usually include the anti-rejection transplant drugs azathioprine (Imuran/Azoran) and mycophenolate mofetil (Cellcept). In the U.S., these drugs are used as "off-label" treatments for CIDP, meaning that their use here is accepted by the FDA, but that CIDP treatment is not explicitly indicated or approved in the drug literature. Before azathioprine is used, the patient should first have a blood test that ensures that azathioprine can safely be used.
Anti-thymocyte globulin (ATG), an immunosuppressive agent that selectively destroys T lymphocytes is being studied for use in CIDP. Anti-thymocyte globulin is the gamma globulin fraction of antiserum from animals that have been immunized against human thymocytes. It is a polyclonal antibody.
Although chemotherapeutic and immunosuppressive agents have shown to be effective in treating CIDP, significant evidence is lacking, mostly due to the heterogeneous nature of the disease in the patient population in addition to the lack of controlled trials.
A review of several treatments found that azathioprine, interferon alpha and methotrexate were not effective. Cyclophosphamide and rituximab seem to have some response. Mycophenolate mofetil may be of use in milder cases. Immunoglobulin and steroids are the first line choices for treatment. Rarely bone marrow transplantation has been performed.
Physical therapy and occupational therapy may improve muscle strength, activities of daily living, mobility, and minimize the shrinkage of muscles and tendons and distortions of the joints.