Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
While investigational drug therapies exist, no curative drug treatment exists for any of the MPDs. The goal of treatment for ET and PV is prevention of thrombohemorrhagic complications. The goal of treatment for MF is amelioration of anemia, splenomegaly, and other symptoms. Low-dose aspirin is effective in PV and ET. Tyrosine kinase inhibitors like imatinib have improved the prognosis of CML patients to near-normal life expectancy.
Recently, a "JAK2" inhibitor, namely ruxolitinib, has been approved for use in primary myelofibrosis. Trials of these inhibitors are in progress for the treatment of the other myeloproliferative neoplasms.
The one known curative treatment is allogeneic stem cell transplantation, but this approach involves significant risks.
Other treatment options are largely supportive, and do not alter the course of the disorder (with the possible exception of ruxolitinib, as discussed below). These options may include regular folic acid, allopurinol or blood transfusions. Dexamethasone, alpha-interferon and hydroxyurea (also known as hydroxycarbamide) may play a role.
Lenalidomide and thalidomide may be used in its treatment, though peripheral neuropathy is a common troublesome side-effect.
Frequent blood transfusions may also be required. If the patient is diabetic and is taking a sulfonylurea, this should be stopped periodically to rule out drug-induced thrombocytopenia.
Splenectomy is sometimes considered as a treatment option for patients with myelofibrosis in whom massive splenomegaly is contributing to anaemia because of hypersplenism, particularly if they have a heavy requirement for blood transfusions. However, splenectomy in the presence of massive splenomegaly is a high-risk procedure, with a mortality risk as high as 3% in some studies.
In November 2011, the FDA approved ruxolitinib (Jakafi) as a treatment for intermediate or high-risk myelofibrosis. Ruxolitinib serves as an inhibitor of JAK 1 and 2.
The "New England Journal of Medicine" (NEJM) published results from two Phase III studies of ruxolitinib. These data showed that the treatment significantly reduced spleen volume, improved symptoms of myelofibrosis, and was associated with improved overall survival compared to placebo.
Treatment of this disorder involves treatment of the underlying cancer.
Hydroxycarbamide, interferon-α and anagrelide can lower the platelet count. Low-dose aspirin is used to reduce the risk of blood clot formation unless the platelet count is very high, where there is a risk of bleeding from the disease and hence this measure would be counter-productive (as they increase one's risk for bleeds).
The PT1 study compared hydroxyurea plus aspirin to anagrelide plus aspirin as initial therapy for ET. Hydroxyurea treated patients had a lower incidence of arterial thrombosis, lower incidence of severe bleeding and lower incidence of transformation to myelofibrosis, but the risk of venous thrombosis was higher with hydroxycarbamide than with anagrelide. It is unknown whether the results are applicable to all ET patients. In people with symptomatic ET and extremely high platelet counts (exceeding 1 million), plateletpheresis can be used to remove platelets from the blood to reduce the risk of thrombosis.
If a patient is resistant to either cladribine or pentostatin, then second-line therapy is pursued.
Monoclonal antibodies The most common treatment for cladribine-resistant disease is infusing monoclonal antibodies that destroy cancerous B cells. Rituximab is by far the most commonly used. Most patients receive one IV infusion over several hours each week for four to eight weeks. A 2003 publication found two partial and ten complete responses out of 15 patients with relapsed disease, for a total of 80% responding. The median patient (including non-responders) did not require further treatment for more than three years. This eight-dose study had a higher response rate than a four-dose study at Scripps, which achieved only 25% response rate. Rituximab has successfully induced a complete response in Hairy Cell-Variant.
Rituximab's major side effect is serum sickness, commonly described as an "allergic reaction", which can be severe, especially on the first infusion. Serum sickness is primarily caused by the antibodies clumping during infusion and triggering the complement cascade. Although most patients find that side effects are adequately controlled by anti-allergy drugs, some severe, and even fatal, reactions have occurred. Consequently, the first dose is always given in a hospital setting, although subsequent infusions may be given in a physician's office. Remissions are usually shorter than with the preferred first-line drugs, but hematologic remissions of several years' duration are not uncommon.
Other B cell-destroying monoclonal antibodies such as Alemtuzumab, Ibritumomab tiuxetan and I-131 Tositumomab may be considered for refractory cases.
Interferon-alpha Interferon-alpha is an immune system hormone that is very helpful to a relatively small number of patients, and somewhat helpful to most patients. In about 65% of patients, the drug helps stabilize the disease or produce a slow, minor improvement for a partial response.
The typical dosing schedule injects at least 3 million units of Interferon-alpha (not pegylated versions) three times a week, although the original protocol began with six months of daily injections.
Some patients tolerate IFN-alpha very well after the first couple of weeks, while others find that its characteristic flu-like symptoms persist. About 10% of patients develop a level of depression. It is possible that, by maintaining a steadier level of the hormone in the body, that daily injections might cause fewer side effects in selected patients. Drinking at least two liters of water each day, while avoiding caffeine and alcohol, can reduce many of the side effects.
A drop in blood counts is usually seen during the first one to two months of treatment. Most patients find that their blood counts get worse for a few weeks immediately after starting treatment, although some patients find their blood counts begin to improve within just two weeks.
It typically takes six months to figure out whether this therapy is useful. Common criteria for treatment success include:
- normalization of hemoglobin levels (above 12.0 g/dL),
- a normal or somewhat low platelet count (above 100 K/µL), and
- a normal or somewhat low absolute neutrophil count (above 1.5 K/µL).
If it is well tolerated, patients usually take the hormone for 12 to 18 months. An attempt may be made then to end the treatment, but most patients discover that they need to continue taking the drug for it to be successful. These patients often continue taking this drug indefinitely, until either the disease becomes resistant to this hormone, or the body produces an immune system response that limits the drug's ability to function. A few patients are able to achieve a sustained clinical remission after taking this drug for six months to one year. This may be more likely when IFN-alpha has been initiated shortly after another therapy. Interferon-alpha is considered the drug of choice for pregnant women with active HCL, although it carries some risks, such as the potential for decreased blood flow to the placenta.
Interferon-alpha works by sensitizing the hairy cells to the killing effect of the immune system hormone TNF-alpha, whose production it promotes. IFN-alpha works best on classic hairy cells that are not protectively adhered to vitronectin or fibronectin, which suggests that patients who encounter less fibrous tissue in their bone marrow biopsies may be more likely to respond to Interferon-alpha therapy. It also explains why non-adhered hairy cells, such as those in the bloodstream, disappear during IFN-alpha treatment well before reductions are seen in adhered hairy cells, such as those in the bone marrow and spleen.
Not all those affected will require treatment at presentation. People are usually split up into low and high risk for bleeding/blood clotting groups (based on their age, their medical history, their blood counts and their lifestyles), low risk individuals are usually treated with aspirin, whereas those at high risk are given hydroxycarbamide and/or other treatments that reduce platelet count (such as interferon-α and anagrelide).
Several treatments are available, and successful control of the disease is common.
Not everyone needs treatment immediately. Treatment is usually given when the symptoms of the disease interfere with the patient's everyday life, or when white blood cell or platelet counts decline to dangerously low levels, such as an absolute neutrophil count below one thousand cells per microliter (1.0 K/uL). Not all patients need treatment immediately upon diagnosis.
Treatment delays are less important than in solid tumors. Unlike most cancers, treatment success does not depend on treating the disease at an early stage. Because delays do not affect treatment success, there are no standards for how quickly a patient should receive treatment. However, waiting too long can cause its own problems, such as an infection that might have been avoided by proper treatment to restore immune system function. Also, having a higher number of hairy cells at the time of treatment can make certain side effects somewhat worse, as some side effects are primarily caused by the body's natural response to the dying hairy cells. This can result in the hospitalization of a patient whose treatment would otherwise be carried out entirely at the hematologist's office.
Single-drug treatment is typical. Unlike most cancers, only one drug is normally given to a patient at a time. While monotherapy is normal, combination therapy—typically using one first-line therapy and one second-line therapy—is being studied in current clinical trials and is used more frequently for refractory cases. Combining rituximab with cladribine or pentostatin may or may not produce any practical benefit to the patient. Combination therapy is almost never used with a new patient. Because the success rates with purine analog monotherapy are already so high, the additional benefit from immediate treatment with a second drug in a treatment-naïve patient is assumed to be very low. For example, one round of either cladribine or pentostatin gives the median first-time patient a decade-long remission; the addition of rituximab, which gives the median patient only three or four years, might provide no additional value for this easily treated patient. In a more difficult case, however, the benefit from the first drug may be substantially reduced and therefore a combination may provide some benefit.
As described above, chloromas should always be considered manifestations of systemic disease, rather than isolated local phenomena, and treated as such. In the patient with newly diagnosed leukemia and an associated chloroma, systemic chemotherapy against the leukemia is typically used as the first-line treatment, unless an indication for local treatment of the chloroma (e.g. compromise of the spinal cord) emerges. Chloromas are typically quite sensitive to standard antileukemic chemotherapy. Allogeneic hematopoietic stem cell transplantation should be considered in fit patients with suitable available donor, as long term remissions have been reported.
If the chloroma is persistent after completion of induction chemotherapy, local treatment, such as surgery or radiation therapy, may be considered, although neither has an effect on survival.
Patients presenting with a primary chloroma typically receive systemic chemotherapy, as development of acute leukemia is nearly universal in the short term after detection of the chloroma.
Patients treated for acute leukemia who relapse with an isolated chloroma are typically treated with systemic therapy for relapsed leukemia. However, as with any relapsed leukemia, outcomes are unfortunately poor.
Patients with "preleukemic" conditions, such as myelodysplastic syndromes or myeloproliferative syndromes, who develop a chloroma are often treated as if they have transformed to acute leukemia.
Median survival is about 9 months.
Autologous stem cell transplantation has been used in treatment.
Often, no treatment is required or necessary for reactive thrombocytosis. In cases of reactive thrombocytosis of more than 1,000x10/L, it may be considered to administer daily low dose aspirin (such as 65 mg) to minimize the risk of stroke or thrombosis.
However, in primary thrombocytosis, if platelet counts are over 750,000 or 1,000,000, and especially if there are other risk factors for thrombosis, treatment may be needed. Selective use of aspirin at low doses is thought to be protective. Extremely high platelet counts in primary thrombocytosis can be treated with hydroxyurea (a cytoreducing agent) or anagrelide (Agrylin).
In Jak-2 positive disorders, ruxolitinib (Jakafi) can be effective.
Treat the underlying cause
Blood transfusion (PRBC) according to need
If the splenomegaly underlies hypersplenism, a splenectomy is indicated and will correct the hypersplenism. However, the underlying cause of the hypersplenism will most likely remain; consequently, a thorough diagnostic workup is still indicated, as, leukemia, lymphoma and other serious disorders can cause hypersplenism and splenomegaly. After splenectomy, however, patients have an increased risk for infectious diseases.
Patients undergoing splenectomy should be vaccinated against "Haemophilus influenzae", "Streptococcus pneumoniae", and "Meningococcus". They should also receive annual influenza vaccinations. Long-term prophylactic antibiotics may be given in certain cases.
In cases of infectious mononucleosis splenomegaly is a common symptom and health care providers may consider using abdominal ultrasonography to get insight into a person's condition. However, because spleen size varies greatly, ultrasonography is not a valid technique for assessing spleen enlargement and should not be used in typical circumstances or to make routine decisions about fitness for playing sports.
Regular administration of exogenous granulocyte colony-stimulating factor (filgrastim) clinically improves neutrophil counts and immune function and is the mainstay of therapy, although this may increase risk for myelofibrosis and acute myeloid leukemia in the long term.
Over 90% of SCN responds to treatment with granulocyte colony-stimulating factor (filgrastim), which has significantly improved survival.
Myelofibrosis, also known as osteomyelofibrosis, is a relatively rare bone marrow cancer. It is currently classified as a myeloproliferative neoplasm, in which the proliferation of an abnormal clone of hematopoietic stem cells in the bone marrow and other sites results in fibrosis, or the replacement of the marrow with scar tissue.
The term "myelofibrosis" alone usually refers to primary myelofibrosis (PMF), also known as chronic idiopathic myelofibrosis (cIMF); the terms idiopathic and primary mean that in these cases the disease is of unknown or spontaneous origin. This is in contrast with myelofibrosis that develops secondary to polycythemia vera or essential thrombocythaemia. Myelofibrosis is a form of myeloid metaplasia, which refers to a change in cell type in the blood-forming tissue of the bone marrow, and often the two terms are used synonymously. The terms agnogenic myeloid metaplasia and myelofibrosis with myeloid metaplasia (MMM) are also used to refer to primary myelofibrosis.
The myeloproliferative neoplasms (MPNs), previously myeloproliferative diseases (MPDs), are a group of diseases of the bone marrow in which excess cells are produced. They are related to, and may evolve into, myelodysplastic syndrome and acute myeloid leukemia, although the myeloproliferative diseases on the whole have a much better prognosis than these conditions. The concept of myeloproliferative disease was first proposed in 1951 by the hematologist William Dameshek. In the most recent World Health Organization classification of hematologic malignancies, this group of diseases was renamed from "myeloproliferative diseases" to "myeloproliferative neoplasms". This reflects the underlying clonal genetic changes that are a salient feature of this group of disease.
The increased numbers of blood cells may not cause any symptoms, but a number of medical problems or symptoms may occur. The risk of thrombosis is increased in some types of MPN.
Controversy remains today whether this disorder is a subtype of acute myeloid leukemia or myelodysplastic syndromes; however, it is currently classified as a form of AML.
Splenectomy is usually ineffective for the treatment of cold agglutinin disease, because the liver is the predominant site of sequestration. However, if the patient has splenomegaly, then the disease may respond to splenectomy. More importantly, a lymphoma localized to the spleen may only be found after splenectomy.
Myelophthisis can occur in the setting of chronic myeloproliferative disease (e.g. myelofibrosis), leukemia, lymphoma, and metastatic carcinoma or myeloma. It is common in people who have chronic idiopathic myelofibrosis. It has been linked to small-cell lung cancer, breast cancer or prostate cancer that metastasizes to the bone marrow.
Historically, the most common cause of displacement of healthy bone marrow was tuberculosis.
Currently, the most common cause is displacement of bone marrow by metastatic cancer (extramedullary hematopoiesis tends to be modest). Other causes include myeloproliferative disorders (especially late-stage or spent polycythemia vera), granulomatous diseases, and (lipid) storage diseases. Myelofibrosis can occur in all of these.
Factors that may contribute to decreased RBC production include a decreased quantity of functioning hematopoietic tissue, disordered metabolism related to the underlying disorder, and, in some cases, erythrophagocytosis.
Patients with cold agglutinin disease should include good sources of folic acid, such as fresh fruits and vegetables, in their diet. Activities for these individuals should be less strenuous than those for healthy people, particularly for patients with anemia. Jogging in the cold could be very hazardous because of the added windchill factor.
Treatment is directed toward the underlying cause. However, in primary eosinophilia, or if the eosinophil count must be lowered, corticosteroids such as prednisone may be used. However, immune suppression, the mechanism of action of corticosteroids, can be fatal in patients with parasitosis.
Complete remission and long-term survival are more common in children than adults.
Prognosis depends upon the cause. One third of cases is associated with a t(1;22)(p13;q13) mutation in children. These cases carry a poor prognosis.
Another third of cases is found in Down syndrome. These cases have a reasonably fair prognosis.
The last third of cases may be heterogeneous, and carry a poor prognosis.
Evidence is conflicting on the prognostic significance of chloromas in patients with acute myeloid leukemia. In general, they are felt to augur a poorer prognosis, with a poorer response to treatment and worse survival; however, others have reported chloromas associate, as a biologic marker, with other poor prognostic factors, and therefore do not have independent prognostic significance.
Certain medications can alter the number and function of white blood cells.
Medications that can cause leukopenia include clozapine, an antipsychotic medication with a rare adverse effect leading to the total absence of all granulocytes (neutrophils, basophils, eosinophils). The antidepressant and smoking addiction treatment drug bupropion HCl (Wellbutrin) can also cause leukopenia with long-term use. Minocycline, a commonly prescribed antibiotic, is another drug known to cause leukopenia. There are also reports of leukopenia caused by divalproex sodium or valproic acid (Depakote), a drug used for epilepsy (seizures), mania (with bipolar disorder) and migraine.
The anticonvulsant drug, lamotrigine, has been associated with a decrease in white blood cell count.
The FDA monograph for metronidazole states that this medication can also cause leukopenia, and the prescriber information suggests a complete blood count, including differential cell count, before and after, in particular, high-dose therapy.
Immunosuppressive drugs, such as sirolimus, mycophenolate mofetil, tacrolimus, ciclosporin, leflunomide and TNF inhibitors, have leukopenia as a known complication. Interferons used to treat multiple sclerosis, such as interferon beta-1a and interferon beta-1b, can also cause leukopenia.
Chemotherapy targets cells that grow rapidly, such as tumors, but can also affect white blood cells, because they are characterized by bone marrow as rapid growing. A common side effect of cancer treatment is neutropenia, the lowering of neutrophils (a specific type of white blood cell).
Decreased white blood cell count may be present in cases of arsenic toxicity.
Acute megakaryoblastic leukemia (AMKL) is a form of leukemia where a majority of the blasts are megakaryoblastic.
It is classified under AML-M7 category of the French-American-British classification.
The latest WHO classification (2008, Lyon), classifies Acute Myeloid Leukemia into distinct subtypes, based on clinico-pathological and molecular features. Acute megakaryoblastic leukemia is placed under the AML-Not Otherwise Specified subcategory.
Diagnosis requires more than 20% Blasts in the marrow/ peripheral blood with more than 50% demonstrating megakaryocytic derivation by morphology, immunophenotypic or electron microscopic studies.
AIP often completely resolves with steroid treatment. The failure to differentiate AIP from malignancy may lead to unnecessary pancreatic resection, and the characteristic lymphoplasmacytic infiltrate of AIP has been found in up to 23% of patients undergoing pancreatic resection for suspected malignancy who are ultimately found to have benign disease. In this subset of patients, a trial of steroid therapy may have prevented a Whipple procedure or complete pancreatectomy for a benign disease which responds well to medical therapy. "This benign disease resembles pancreatic carcinoma both clinically and radiographically. The diagnosis of autoimmune pancreatitis is challenging to make. However, accurate and timely diagnosis may preempt the misdiagnosis of cancer and decrease the number of unnecessary pancreatic resections." Autoimmune pancreatitis responds dramatically to corticosteroid treatment.
If relapse occurs after corticosteroid treatment or corticosteroid treatment is not tolerated, immunomodulators may be used. Immunomodulators such as azathioprine, and 6-mercaptopurine have been shown to extend remission of autoimmune pancreatitis after corticosteroid treatment. If corticosteroid and immunomodulator treatments are not sufficient, rituximab may also be used. Rituximab has been shown to induce and maintain remission.