Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Recommended treatments for most cases of sinusitis include rest and drinking enough water to thin the mucus. Antibiotics are not recommended for most cases.
Breathing low-temperature steam such as from a hot shower or gargling can relieve symptoms. There is tentative evidence for nasal irrigation. Decongestant nasal sprays containing oxymetazoline may provide relief, but these medications should not be used for more than the recommended period. Longer use may cause rebound sinusitis. It is unclear if nasal irrigation, antihistamines, or decongestants work in children with acute sinusitis.
For unconfirmed acute sinusitis, intranasal corticosteroids have not been found to be better than a placebo either alone or in combination with antibiotics. For cases confirmed by radiology or nasal endoscopy, treatment with corticosteroids alone or in combination with antibiotics is supported. The benefit, however, is small.
There is only limited evidence to support short treatment with oral corticosteroids for chronic rhinosinusitis with nasal polyps.
In cases of viral adenoiditis, treatment with analgesics or antipyretics is often sufficient. Bacterial adenoiditis may be treated with antibiotics, such as amoxicillin - clavulanic acid or a cephalosporin. In case of adenoid hypertrophy, adenoidectomy may be performed to remove the adenoid.
Reduction of hypertrophied turbinates, correction of nasal septum deviation, removal of polyps, sectioning of the parasympathetic secretomotor fiber to nose (vidian neurectomy) for controlling refractory excessive rhinorrhea.
In most cases treatment for rhinorrhea is not necessary since it will clear up on its own—especially if it is the symptom of an infection. For general cases blowing your nose can get rid of the mucus buildup. Though blowing may be a quick-fix solution, it would likely proliferate mucosal production in the sinuses, leading to frequent and higher mucus buildups in the nose. Alternatively, saline nasal sprays and vasoconstrictor nasal sprays may also be used, but may become counterproductive after several days of use, causing rhinitis medicamentosa.
In recurring cases, such as those due to allergies, there are medicinal treatments available. For cases caused by histamine buildup, several types of antihistamines can be obtained relatively cheaply from drugstores.
People who prefer to keep clear nasal passages, such as singers, who need a clear nasal passage to perform, may use a technique called "nasal irrigation" to prevent rhinorrhea. Nasal irrigation involves rinsing the nasal cavity regularly with salty water or store bought saline solutions.
Gargling salt water is often suggested but evidence looking at its usefulness is lacking. Alternative medicines are promoted and used for the treatment of sore throats. However, they are poorly supported by evidence.
The majority of time treatment is symptomatic. Specific treatments are effective for bacterial, fungal, and herpes simplex infections.
Prescribing antibiotics for laryngitis is not suggested practice. The antibiotics penicillin V and erythromycin are not effective for treating acute laryngitis. Erythromycin may improve voice disturbances after one week and cough after two weeks, however any modest subjective benefit is not greater than the adverse effects, cost, and the risk of bacteria developing resistance to the antibiotics. Health authorities have been strongly encouraging physicians to decrease the prescribing of antibiotics to treat common upper respiratory tract infections because antibiotic usage does not significantly reduce recovery time for these viral illnesses. Decreased antibiotic usage could also have prevented drug resistant bacteria. Some have advocated a delayed antibiotic approach to treating URIs which seeks to reduce the consumption of antibiotics while attempting to maintain patient satisfaction. Most studies show no difference in improvement of symptoms between those treated with antibiotics right away and those with delayed prescriptions. Most studies also show no difference in patient satisfaction, patient complications, symptoms between delayed and no antibiotics. A strategy of "no antibiotics" results in even less antibiotic use than a strategy of "delayed antibiotics".
The avoidance of inciting factors such as sudden changes in temperature, humidity, or blasts of air or dust is helpful.
Intranasal application of antihistamines, corticosteroids, or anticholinergics may also be used for vasomotor rhinitis. Intranasal cromolyn sodium may be used in patients older than two years.
Astelin (Azelastine) "is indicated for symptomatic treatment of vasomotor rhinitis including rhinorrhea, nasal congestion, and post nasal drip in adults and children 12 years of age and older."
The Centers for Disease Control describe protocol for treating sinusitis while at the same time discouraging overuse of antibiotics:
- Target likely organisms with first-line drugs: Amoxicillin, Amoxicillin/Clavulanate
- Use shortest effective course: Should see improvement in 2–3 days. Continue treatment for 7 days after symptoms improve or resolve (usually a 10–14 day course).
- Consider imaging studies in recurrent or unclear cases: some sinus involvement is frequent early in the course of uncomplicated viral URI
Treatment comprises symptomatic support usually via analgesics for headache, sore throat and muscle aches. Moderate exercise in sedentary subjects with naturally acquired URTI probably does not alter the overall severity and duration of the illness. No randomized trials have been conducted to ascertain benefits of increasing fluid intake.
Treatment for fungal sinusitis can include surgical debridement; helps by slowing progression of disease thus allowing time for recovery additionally we see the options below:
- In the case of invasive fungal sinusitis, echinocandins, voriconazole, and amphoterecin (via IV) may be used
- For allergic fungal sinusitis, systemic corticosteroids like prednisolone, methylprednisolone are added for their anti-inflammatory effect, bronchodilators and expectorants help to clear secretions in the sinuses.
First-generation antihistamine has been suggested as first-line therapy to treat post-nasal drip.
Treatment of atrophic rhinitis can be either medical or surgical.
Medical measures include:
- Nasal irrigation using normal saline
- Nasal irrigation and removal of crusts using alkaline nasal solutions prepared by dissolving a spoonful of powder containing one part sodium bicarbonate, one part sodium biborate and two part sodium chloride.
- 25% glucose in glycerine can be applied to the nasal mucosa to inhibit the growth of proteolytic organisms which produce foul smell.
- Local antibiotics, such as chloromycetine.
- Vitamin D (Kemicetine).
- Estradiol spray for regeneration of seromucinous glands and vascularization of mucosa.
- Systemic streptomycin (1g/day) against Klebsiella organisms.
- Oral potassium iodide for liquefaction of secretion.
- Placental extract injected in the submucosa.
Surgical interventions include:
- Young's operation.
- Modified Young's operation.
- Narrowing of nasal cavities, submucosal injection of Teflon paste, section and medial displacement of the lateral wall of the nose.
- Transposition of parotid duct to maxillary sinus or nasal mucosa.
The preferred treatment for many patients is desensitization to aspirin, undertaken at a clinic or hospital specializing in such treatment. In the United States, the Scripps Clinic in San Diego, CA, the Massachusetts General Hospital in Boston, MA, the Brigham and Women's Hospital in Boston, MA, National Jewish Hospital in Denver and Stanford University Adult ENT Clinic have allergists who routinely perform aspirin desensitization procedures for patients with aspirin-induced asthma. Patients who are desensitized then take a maintenance dose of aspirin daily and while on daily aspirin they often have reduced need for supporting medications, fewer asthma and sinusitis symptoms than previously, and many have an improved sense of smell. Desensitization to aspirin reduces the chance of nasal polyp recurrence, and can slow the regrowth of nasal polyps. Even patients desensitized to aspirin may continue to need other medications including nasal steroids, inhaled steroids, and leukotriene antagonists.
Leukotriene antagonists and inhibitors (montelukast, zafirlukast, and zileuton) are often helpful in treating the symptoms of aspirin-induced asthma. Some patients require oral steroids to alleviate asthma and congestion, and most patients will have recurring or chronic sinusitis due to the nasal inflammation.
Often surgery is required to remove nasal polyps, although they typically recur, particularly if aspirin desensitization is not undertaken. 90% of patients have been shown to have recurrence of nasal polyps within 5 years after surgery, with 47% requiring revision surgery in the same time period.
The first line of treatment for nasal polyps is topical steroids. Steroids decrease the inflammation of the sinus mucosa to decrease the size of the polyps and improve symptoms. Topical preparations are preferred in the form of a nasal spray, but are often ineffective for people with many polyps. Steroids by mouth often provide drastic symptom relief, but should not be taken for long periods of time due to their side effects. Because steroids only shrink the size and swelling of the polyp, people often have recurrence of symptoms once the steroids are stopped. Decongestants do not shrink the polyps, but can decrease swelling and provide some relief. Antibiotics are only recommended if the person has a co-occurring bacterial infection.
In people with nasal polyps caused by aspirin or NSAIDs, avoidance of these medications will help with symptoms. Aspirin desensitization has also been shown to be beneficial.
There are many causes of toothache and its diagnosis is a specialist topic, meaning that attendance at a dentist is usually required. Since many cases of toothache are inflammatory in nature, over the counter non-steroidal anti-inflammatory drugs (NSAIDs) may help (unless contraindicated, such as with a peptic ulcer). Generally, NSAIDs are as effective as aspirin alone or in combination with codeine. However, simple analgesics may have little effect on some causes of toothache, and the severe pain can drive individuals to exceed the maximum dose. For example, when acetaminophen (paracetamol) is taken for toothache, an accidental overdose is more likely to occur when compared to people who are taking acetaminophen for other reasons. Another risk in persons with toothache is a painful chemical burn of the oral mucosa caused by holding a caustic substance such as aspirin tablets and toothache remedies containing eugenol (such as clove oil) against the gum. Although the logic of placing a tablet against the painful tooth is understandable, an aspirin tablet needs to be swallowed to have any pain-killing effect. Caustic toothache remedies require careful application to the tooth only, without coming into excessive contact with the soft tissues of the mouth.
For the dentist, the goal of treatment generally is to relieve the pain, and wherever possible to preserve or restore function. The treatment depends on the cause of the toothache, and frequently a clinical decision regarding the current state and long-term prognosis of the affected tooth, as well as the individual's wishes and ability to cope with dental treatment, will influence the treatment choice. Often, administration of an intra-oral local anesthetic such as lidocaine and epinephrine is indicated in order to carry out pain-free treatment. Treatment may range from simple advice, removal of dental decay with a dental drill and subsequent placement of a filling, to root canal treatment, tooth extraction, or debridement.
Although orbital cellulitis is considered an ophthalmic emergency the prognosis is good if prompt medical treatment is received.
Adenoiditis occurs mainly in childhood, often associated with acute tonsillitis. Incidence decreases with age, with adenoiditis being rare in children over 15 years due to physiological atrophy of the adenoid tissue.
Medications may be needed as an adjunct to assist the closure of the defect. Antibiotics can help control or prevent any sinus infections. Preoperative nasal decongestants usage can reduce any existing sinus inflammation which will aid surgical manipulation of the mucosa over the bone.
Antibiotics are commonly used to prevent secondary bacterial infection. There are no specific antiviral drugs in common use at this time for FVR, although one study has shown that ganciclovir, PMEDAP, and cidofovir hold promise for treatment. More recent research has indicated that systemic famciclovir is effective at treating this infection in cats without the side effects reported with other anti-viral agents. More severe cases may require supportive care such as intravenous fluid therapy, oxygen therapy, or even a feeding tube. Conjunctivitis and corneal ulcers are treated with topical antibiotics for secondary bacterial infection.
Lysine is commonly used as a treatment, however in a 2015 systematic review, where the authors investigated all clinical trials with cats as well as "in vitro" studies, concluded that lysine supplementation is not effective for the treatment or prevention of feline herpesvirus 1 infection.
Immediate treatment is very important for someone with orbital cellulitis. Treatment typically involves intravenous (IV) antibiotics in the hospital and frequent observation (every 4–6 hours). Along with this several laboratory tests are run including a complete blood count, differential, and blood culture.
- Antibiotic therapy – Since orbital cellulitis is commonly caused by "Staphylococcus" and "Streptococcus" species both penicillins and cephalosporins are typically the best choices for IV antibiotics. However, due to the increasing rise of MRSA (methicillin-resistant "Staphylococcus aureus") orbital cellulitis can also be treated with Vancomycin, Clindamycin, or Doxycycline. If improvement is noted after 48 hours of IV antibiotics, healthcare professions can then consider switching a patient to oral antibiotics (which must be used for 2–3 weeks).
- Surgical intervention – An abscess can threaten the vision or neurological status of a patient with orbital cellulitis, therefore sometimes surgical intervention is necessary. Surgery typically requires drainage of the sinuses and if a subperiosteal abscess is present in the medial orbit, drainage can be performed endoscopically. Post-operatively, patients must follow up regularly with their surgeon and remain under close observation.
Endoscopic sinus surgery with removal of polyps is often very effective for most people providing rapid symptom relief. Endoscopic sinus surgery is minimally-invasive and is done entirely through the nostril with the help of a camera. Surgery should be considered for those with complete nasal obstruction, uncontrolled runny nose, nasal deformity caused by polyps or continued symptoms despite medical management. Surgery serves to remove the polyps as well as the surrounding inflamed mucosa, open obstructed nasal passages, and clear the sinuses. This not only removes the obstruction caused by the polyps themselves, but allows medications such as saline irrigations and topical steroids to become more effective.
Surgery lasts approximately 45 minutes to 1 hour and can be done under general or local anesthesia. Most patients tolerate the surgery without much pain, though this can vary from patient to patient. The patient should expect some discomfort, congestion, and drainage from the nose in the first few days after surgery, but this should be mild. Complications from endoscopic sinus surgery are rare, but can include bleeding and damage to other structures in the area including the eye or brain.
Many physicians recommend a course of oral steroids prior to surgery to reduce mucosal inflammation, decrease bleeding during surgery, and help with visualization of the polyps. Nasal steroid sprays should be used preventatively after surgery to delay or prevent recurrence. People often have recurrence of polyps even following surgery. Therefore, continued follow up with a combination of medical and surgical management is preferred for the treatment of nasal polyps.
These interventions employ the principle of placement of materials into the defect without flap closure. These materials may act as a mechanical barrier and/or promote the healing process of the communication. Different materials, such as synthetic graft materials, xenografts, fibrin glue, synthetic absorbable implant and acrylic splints has all been reported as potential material to use.
Rhinorrhea can occur as a symptom of opioid withdrawal accompanied by lacrimation. Other causes include cystic fibrosis, whooping cough, nasal tumors, hormonal changes, and cluster headaches. Due to changes in clinical practice, Rhinorrhea is now reported as a frequent side effect of oxygen-intubation during colonoscopy procedures [A simple, innovative way to reduce rhinitis symptoms after sedation during endoscopy" by Nai-Liang Li, et al, Canadian Journal of Gastroenterology, 2011, Feb; volume 25(2): pages 68–72.]. Rhinorrhea can also be the side effect of several genetic disorders, such as primary ciliary dyskinesia.