Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pacing is an energy management strategy based on the observation that symptoms of the illness tend to increase following minimal exertion. There are two forms: symptom-contingent pacing, where the decision to stop (and rest or change an activity) is determined by an awareness of an exacerbation of symptoms; and time-contingent pacing, which is determined by a set schedule of activities which a patient estimates he or she is able to complete without triggering post-exertional malaise (PEM). Thus the principle behind pacing for CFS is to avoid over-exertion and an exacerbation of symptoms. It is not aimed at treating the illness as a whole. Those whose illness appears stable may gradually increase activity and exercise levels, but, according to the principle of pacing, must rest if it becomes clear that they have exceeded their limits.
Patients with CFS benefit from a well-balanced diet and eating regularly (eating little and often), including slow-release starchy foods in meals and snacks. Although elimination diets are not generally recommended, many people experience relief of CFS symptoms with these diets, including gastrointestinal complaints. To avoid the risk of malnutrition, they should be supervised by a dietitian.
A growing body of evidence supports that prevention is effective in reducing the effect of chronic conditions; in particular, early detection results in less severe outcomes. Clinical preventive services include screening for the existence of the disease or predisposition to its development, counseling and immunizations against infectious agents. Despite their effectiveness, the utilization of preventive services is typically lower than for regular medical services. In contrast to their apparent cost in time and money, the benefits of preventive services are not directly perceived by patient because their effects are on the long term or might be greater for society as a whole than at the individual level.
Therefore, public health programs are important in educating the public, and promoting healthy lifestyles and awareness about chronic diseases. While those programs can benefit from funding at different levels (state, federal, private) their implementation is mostly in charge of local agencies and community-based organizations.
Studies have shown that public health programs are effective in reducing mortality rates associated to cardiovascular disease, diabetes and cancer, but the results are somewhat heterogeneous depending on the type of condition and the type of programs involved. For example, results from different approaches in cancer prevention and screening depended highly on the type of cancer.
The rising number of patient with chronic diseases has renewed the interest in prevention and its potential role in helping control costs. In 2008, the Trust for America's Health produced a report that estimated investing $10 per person annually in community-based programs of proven effectiveness and promoting healthy lifestyle (increase in physical activity, healthier diet and preventing tobacco use) could save more than $16 billion annually within a period of just five years.
When eosinophilic pneumonia is related to an illness such as cancer or parasitic infection, treatment of the underlying cause is effective in resolving the lung disease. When due to AEP or CEP, however, treatment with corticosteroids results in a rapid, dramatic resolution of symptoms over the course of one or two days. Either intravenous methylprednisolone or oral prednisone are most commonly used. In AEP, treatment is usually continued for a month after symptoms disappear and the x-ray returns to normal (usually four weeks total). In CEP, treatment is usually continued for three months after symptoms disappear and the x-ray returns to normal (usually four months total). Inhaled steroids such as fluticasone have been used effectively when discontinuation of oral prednisone has resulted in relapse.
Because EP affects the lungs, individuals with EP have difficulty breathing. If enough of the lung is involved, it may not be possible for a person to breathe without support. Non-invasive machines such as a bilevel positive airway pressure machine may be used. Otherwise, placement of a breathing tube into the mouth may be necessary and a ventilator may be used to help the person breathe.
In the treatment of HIV, the success of antiretroviral therapies means that many patients will experience this infection as a chronic disease that for many will span several decades of their life.
Chronic critical illness is a disease state which affects intensive care patients who have survived an initial insult but remain dependent on intensive care for a protracted period, neither dying nor recovering. The most characteristic clinical feature is a prolonged requirement for mechanical ventilation. Other features include profound weakness associated with critical illness polyneuropathy, increased susceptibility to infection, metabolic changes and hormonal changes. There may be protracted or permanent delirium, or other marked cognitive impairment. The physical and psychological symptoms of the disease are very severe, including a propensity to develop post traumatic stress syndrome.
Strict definitions of chronic critical illness vary. One definition is the requirement for mechanical ventilation for 21 days or more. It is estimated that 5-10% of patients who require mechanical ventilation as part of their initial illness will go on to develop chronic critical illness. Overall prevalence has been estimated at 34.4 per 100 000 of the population. Most adult patients do not survive chronic critical illness, and furthermore even those who are discharged from hospital frequently die soon after discharge. One-year mortality in adults is 48-68%. However, children fare better with two-thirds surviving to 5 years or beyond.
To properly treat a patient with tracheobronchomalacia, the subtype must be determined (primary or secondary). After the type is named, the cause must be identified, whether it is from genetics, a trauma accident, or chronic tracheal illness. If a trauma case or chronic tracheal illnesses were the cause, the first steps of treatment would be to fix or help these underlying issues. If the cause is genetic or the previous underlying issues could not be fixed, other treatments would be assessed. More severe treatments include silicone stenting to prevent tracheal constriction, surgery to strengthen or attempt to rebuild the walls, continuous positive airway pressure that has a machine blow small amounts of air into the trachea to keep it open (mainly at night), or a tracheostomy, which is surgically put into your neck that leads to your trachea to help with breathing. People with tracheobronchomalacia who do not experience symptoms do not need treatment and are often undiagnosed.
Current antidotes for OP poisoning consist of a pretreatment with carbamates to protect AChE from inhibition by OP compounds and post-exposure treatments with anti-cholinergic drugs. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of "-oximes" has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally. These antidotes are effective at preventing lethality from OP poisoning, but current treatment lack the ability to prevent post-exposure incapacitation, performance deficits, or permanent brain damage. While the efficacy of atropine has been well-established, clinical experience with pralidoxime has led to widespread doubt about its efficacy in treatment of OP poisoning.
Enzyme bioscavengers are being developed as a pretreatment to sequester highly toxic OPs before they can reach their physiological targets and prevent the toxic effects from occurring. Significant advances with cholinesterases (ChEs), specifically human serum BChE (HuBChE) have been made. HuBChe can offer a broad range of protection for nerve agents including soman, sarin, tabun, and VX. HuBChE also possess a very long retention time in the human circulation system and because it is from a human source it will not produce any antagonistic immunological responses. HuBChE is currently being assessed for inclusion into the protective regimen against OP nerve agent poisoning. Currently there is potential for PON1 to be used to treat sarin exposure, but recombinant PON1 variants would need to first be generated to increase its catalytic efficiency.
One other agent that is being researched is the Class III anti-arrhythmic agents. Hyperkalemia of the tissue is one of the symptoms associated with OP poisoning. While the cellular processes leading to cardiac toxicity are not well understood, the potassium current channels are believed to be involved. Class III anti-arrhythmic agents block the potassium membrane currents in cardiac cells, which makes them a candidate for become a therapeutic of OP poisoning.
The treatment or management of cachexia depends on the underlying causes, the general prognosis and other person related factors. Reversible causes, underlying diseases and contributing factors are treated if possible and acceptable. A growing body of evidence supports the efficacy of (HMB) as a treatment for reducing, or even reversing, the loss of muscle mass, muscle function, and muscle strength that occurs in hypercatabolic disease states such as cachexia; consequently, it is recommended that both the prevention and treatment of muscle wasting conditions include supplementation with HMB, regular resistance exercise, and consumption of a high-protein diet. Progestins such as megestrol acetate are a treatment option in refractory cachexia with anorexia as a major symptom.
Cachexia occurs less frequently now in HIV/AIDS than in the past due to the advent of highly active antiretroviral therapy (HAART). Treatment involving different combinations for cancer cachexia is recommended in Europe, as a combination of nutrition, medication and non-drug-treatment may be more effective than monotherapy. Non-drug therapies which have been shown to be effective in cancer induced cachexia include nutritional counselling, psychotherapeutic interventions, and physical training. Anabolic-androgenic steroids like oxandrolone may be beneficial in cancer cachexia but their use is recommended for maximal 2 weeks since a longer duration of treatment increases the burden from side effects.
Other drugs that have been used or are being investigated in cachexia therapy, but which lack conclusive evidence of efficacy or safety, and are not generally recommended include:
- Thalidomide and cytokine antagonists
- Cannabinoids
- Omega-3 fatty acids, including eicosapentaenoic acid (EPA)
- Non-steroidal anti-inflammatory drugs
- Prokinetics
- Ghrelin and ghrelin receptor agonist
- Anabolic catabolic transforming agents such as MT-102
- Selective androgen receptor modulators
- Cyproheptadine
- Hydrazine
Medical marijuana has been allowed for the treatment of cachexia in some US states, such as Illinois, Maryland, Delaware, Nevada, Michigan, Washington, Oregon, California, Colorado, New Mexico, Arizona, Vermont, New Jersey, Rhode Island, Maine, and New York Hawaii and Connecticut.
There is insufficient evidence to support the use of oral fish oil for the management of cachexia associated with advanced cancer.
Cognitive Behavioral Therapy (CBT) is one of the most common techniques used to build resilience in children suffering from chronic illnesses. CBT includes the practice of breathing exercises, relaxation training, imagery, distraction methods, coping models, cognitive coping skills, reinforcement for compliance, behavioral rehearsal, role-play and direct coaching. Another intervention that is gaining popularity is the PASS Theory of Intelligence. The PASS Model combines a multitude of interventions to create a well-rounded program to foster resiliency in not only the children but the families affected as well. The goals of the pass model are to minimize trauma symptoms, develop adaptive coping skills, strengthen resiliency, and connect families to support networks.
There is no cure or vaccine for HPS. Treatment involves supportive therapy, including mechanical ventilation with supplemental oxygen during the critical respiratory-failure stage of the illness. Early recognition of HPS and admission to an intensive care setting offers the best prognosis.
Eosinophilic pneumonia due to cancer or parasitic infection carries a prognosis related to the underlying illness. AEP and CEP, however, have very little associated mortality as long as intensive care is available and treatment with corticosteroids is given. CEP often relapses when prednisone is discontinued; therefore, some people with CEP require lifelong therapy. Chronic prednisone is associated with many side effects, including increased infections, weakened bones, stomach ulcers, and changes in appearance.
Only limited treatment options exist for patients with clinical cancer cachexia. Current strategy is to improve appetite by using appetite stimulants to ensure adequate intake of nutrients. Pharmacological interventions with appetite stimulants, nutrient supplementation, 5-HT antagonists and Cox-2 inhibitor have been used to treat cancer cachexia, but with limited effect.
Studies using a more calorie-dense (1.5 kcals/ml) and higher protein supplementation have suggested at least weight stabilization can be achieved, although improvements in lean body mass have not been observed in these studies.
Therapeutic strategies have been based on either blocking cytokines synthesis or their action. Thalidomide has been demonstrated to suppress TNF-alpha production in monocytes "in vitro" and to normalize elevated TNF-alpha levels "in vivo". A randomized, placebo-controlled trial in patients with cancer cachexia showed the drug was well tolerated and effective at attenuating loss of weight and lean body mass (LBM) in patients with advanced pancreatic cancer. An improvement in the LBM and improved quality of life were also observed in a randomized, double-blind trial using a protein and energy-dense, omega-3 fatty acids-enriched oral supplement, provided its consumption was equal or superior to 2.2 g of eicosapentaenoic acid per day. It is also through decreasing TNF-alpha production. However, data arising from a large, multicenter, double-blind, placebo-controlled trial indicate EPA administration alone is not successful in the treatment of weight loss in patients with advanced gastrointestinal or lung cancer.
Peripheral muscle proteolysis, as it occurs in cancer cachexia, serves to mobilize amino acids required for the synthesis of liver and tumor protein. Therefore, the administration of exogenous amino acids may theoretically serve as a protein-sparing metabolic fuel by providing substrates for both muscle metabolism and gluconeogenesis. Studies have demonstrated dietary supplementation with a specific combination of high protein, leucine and fish oil improves muscle function and daily activity and the immune response in cachectic tumor-bearing mice. In addition, β-hydroxy-β-methyl butirate derived from leucine catabolism used as a supplement in tumor-bearing rats prevents cachexia by modifying NF-κB expression.
A phase-2 study involving the administration of antioxidants, pharmaconutritional support, progestin (megestrol acetate and medroxyprogesterone acetate), and anticyclooxygenase-2 drugs, showed efficacy and safety in the treatment of patients with advanced cancer of different sites suffering cachexia. These data reinforce the use of the multitargeted therapies (nutritional supplementation, appetite stimulants, and physical activity regimen) in the treatment of cancer cachexia.
New studies indicate NSAIDS, like Sulindac, were found to significantly decrease cachexia.
Also studies have shown branched-chain amino acids can return the metabolism of a cachectic patient from catabolic-losing weight- to anabolic- increasing muscle, in over 55% of patients. Branched-chain amino acids consist primarily of leucine and valine. In a research paper published by the Indian J of Palliat Care, the effects the findings concluded that bcaa's interfere with brain serotonergic activity and inhibit the overexpression of critical muscular proteolytic pathways. The potential role of branched-chain amino acids as antianorexia and anticachexia agents was proposed many years ago, but experimental studies and clinical trials have since tested their ability to stimulate food intake and counteract muscle wasting in anorectic, weight-losing patients. In experimental models of cancer cachexia, BCAAs were able to induce a significant suppression in the loss of body weight, producing a significant increase in skeletal muscle wet weight[30] as well as in muscle performance and total daily activity.
The conditionally essential amino acid glutamine has been used as a component of oral supplementation to reverse cachexia in patients with advanced cancer or HIV/AIDS.
The article "Cotard's syndrome: A Review" (2010) reports successful pharmacological treatments (mono-therapeutic and multi-therapeutic) using antidepressant, antipsychotic, and mood stabilizing drugs; likewise, with the depressed patient, electroconvulsive therapy (ECT) is more effective than pharmacotherapy. Cotard syndrome resulting from an adverse drug reaction to valacyclovir is attributed to elevated serum concentration of one of valacyclovir's metabolites, 9-carboxymethoxymethylguanine (CMMG). Successful treatment warrants cessation of the drug, valacyclovir. Hemodialysis was associated with timely clearance of CMMG and resolution of symptoms.
During the acute stage, treatment is aimed at reducing the inflammation. As in other inflammatory diseases, steroids may be used first of all, either as a short course of high-dose treatment, or in a lower dose for long-term treatment. Intravenous immunoglobulin is also effective both in the short term and in the long term, particularly in adults where it has been proposed as first-line treatment. Other similar treatments include plasmapheresis and tacrolimus, though there is less evidence for these. None of these treatments can prevent permanent disability from developing.
During the residual stage of the illness when there is no longer active inflammation, treatment is aimed at improving the remaining symptoms. Standard anti-epileptic drugs are usually ineffective in controlling seizures, and it may be necessary to surgically remove or disconnect the affected cerebral hemisphere, in an operation called hemispherectomy. This usually results in further weakness, hemianopsia and cognitive problems, but the other side of the brain may be able to take over some of the function, particularly in young children. The operation may not be advisable if the left hemisphere is affected, since this hemisphere contains most of the parts of the brain that control language. However, hemispherectomy is often very effective in reducing seizures.
First-line treatment for CIDP is currently intravenous immunoglobulin (IVIG) and other treatments include corticosteroids (e.g. prednisone), and plasmapheresis (plasma exchange) which may be prescribed alone or in combination with an immunosuppressant drug. Recent controlled studies show subcutaneous immunoglobin (SCIG) appears to be as effective for CIDP treatment as IVIG in most patients, and with fewer systemic side effects.
IVIG and plasmapheresis have proven benefit in randomized, double-blind, placebo-controlled trials. Despite less definitive published evidence of efficacy, corticosteroids are considered standard therapies because of their long history of use and cost effectiveness. IVIG is probably the first-line CIDP treatment, but is extremely expensive. For example, in the U.S., a single 65 g dose of Gamunex brand in 2010 might be billed at the rate of $8,000 just for the immunoglobulin—not including other charges such as nurse administration. Gamunex brand IVIG is the only U.S. FDA approved treatment for CIDP, as in 2008 Talecris, the maker of Gamunex, received orphan drug status for this drug for the treatment of CIDP.
Immunosuppressive drugs are often of the cytotoxic (chemotherapy) class, including rituximab (Rituxan) which targets B cells, and cyclophosphamide, a drug which reduces the function of the immune system. Ciclosporin has also been used in CIDP but with less frequency as it is a newer approach. Ciclosporin is thought to bind to immunocompetent lymphocytes, especially T-lymphocytes.
Non-cytotoxic immunosuppressive treatments usually include the anti-rejection transplant drugs azathioprine (Imuran/Azoran) and mycophenolate mofetil (Cellcept). In the U.S., these drugs are used as "off-label" treatments for CIDP, meaning that their use here is accepted by the FDA, but that CIDP treatment is not explicitly indicated or approved in the drug literature. Before azathioprine is used, the patient should first have a blood test that ensures that azathioprine can safely be used.
Anti-thymocyte globulin (ATG), an immunosuppressive agent that selectively destroys T lymphocytes is being studied for use in CIDP. Anti-thymocyte globulin is the gamma globulin fraction of antiserum from animals that have been immunized against human thymocytes. It is a polyclonal antibody.
Although chemotherapeutic and immunosuppressive agents have shown to be effective in treating CIDP, significant evidence is lacking, mostly due to the heterogeneous nature of the disease in the patient population in addition to the lack of controlled trials.
A review of several treatments found that azathioprine, interferon alpha and methotrexate were not effective. Cyclophosphamide and rituximab seem to have some response. Mycophenolate mofetil may be of use in milder cases. Immunoglobulin and steroids are the first line choices for treatment. Rarely bone marrow transplantation has been performed.
Physical therapy and occupational therapy may improve muscle strength, activities of daily living, mobility, and minimize the shrinkage of muscles and tendons and distortions of the joints.
At the time of the report there was no known treatment for the disease; specifically, it was not established whether steroids were helpful or harmful. Other techniques such as plasmaphoresis, intravenous immunoglobulin, and experimental antiviral drugs have been attempted on a trial basis, but have not been reported to be effective. On November 7 the CDC issued "Interim Considerations for Clinical Management of Patients with Acute Flaccid Myelitis", based on "consensus guidance drawn from experts in infectious diseases, neurology, pediatrics, critical care medicine, public health epidemiology and virology." Mark Sawyer of the American Academy of Pediatrics, who contributed to the guidance, was quoted by the organization's newsletter: The most important issue summarized in the document is that there is no clear evidence that therapies intended to modify the immune system (e.g., corticosteroids, immune globulin, plasmapheresis) have a beneficial effect in this condition. Plasmapheresis is specifically not recommended because the potential for harm is significant in the absence of any evidence of benefit.
Chronic illness can affect a child’s development at any stage. During infancy and childhood chronic illness can be detrimental to the development of secure attachment, interpersonal trust, self-regulation, and/or peer relation skills. During middle adolescence, chronic illness can prevent a child from being in school on a regular basis. This can affect a child’s academic and social competence. During adolescence, chronic illness can affect the development of autonomy and self-image. It can also interfere with peer & romantic relationships, and the desire for independence can lead to poor treatment compliance.
Sudden cessation of high-dose corticosteroids, opioids, barbiturates, benzodiazepines, caffeine or alcohol can induce myalgia in many respects.
To date, cognitive behavioral therapy (CBT) is the best established treatment for a variety of somatoform disorders including somatization disorder. CBT aims to help patients realize their ailments are not catastrophic and to enable them to gradually return to activities they previously engaged in, without fear of "worsening their symptoms". Consultation and collaboration with the primary care physician also demonstrated some effectiveness. The use of antidepressants is preliminary but does not yet show conclusive evidence. Electroconvulsive shock therapy (ECT) has been used in treating somatization disorder among the elderly; however, the results were still debatable with some concerns around the side effects of using ECT. Overall, psychologists recommend addressing a common difficulty in patients with somatization disorder in the reading of their own emotions. This may be a central feature of treatment; as well as developing a close collaboration between the GP, the patient and the mental health practitioner.
The treatment for delirium with medications depends on its cause. Antipsychotics, particularly haloperidol, are the most commonly used drugs for delirium and the most studied. Evidence is weaker for the atypical antipsychotics, such as risperidone, olanzapine and quetiapine. British professional guidelines by the National Institute for Health and Clinical Excellence advise haloperidol or olanzapine. Antipsychotics however are not supported for the treatment or prevention of delirium among those who are in hospital.
Benzodiazepines themselves can cause delirium or worsen it, and there is no reliable evidence for use in non-alcohol-related delirium. If delirium is due to alcohol withdrawal or benzodiazepine withdrawal or if antipsychotics are contraindicated (e.g. in Parkinson's disease or neuroleptic malignant syndrome), then benzodiazepines are recommended. Similarly, people with dementia with Lewy bodies may have significant side-effects to antipsychotics, and should either be treated with a small dose or not at all.
The antidepressant trazodone is occasionally used in the treatment of delirium, but it carries a risk of oversedation, and its use has not been well studied.
Refeeding syndrome can be fatal if not recognized and treated properly. An awareness of the condition and a high index of suspicion are required in order to make the diagnosis. The electrolyte disturbances of the refeeding syndrome can occur within the first few days of refeeding. Close monitoring of blood biochemistry is therefore necessary in the early refeeding period. In critically ill patients admitted to an intensive care unit, if phosphate drops to below 0.65 mmol from a previously normal level within three days of starting enteral or parenteral nutrition, caloric intake should be reduced to 480 kcals per day for at least two days whilst electrolytes are replaced. Prescribing thiamine, vitamin B complex (strong) and a multivitamin and mineral preparation is recommended. Biochemistry should be monitored regularly until it is stable. Although clinical trials are lacking in patients other than those admitted to an intensive care, it is commonly recommended that energy intake should remain lower than that normally required for the first 3–5 days of treatment of refeeding syndrome.
See NICE Clinical guideline CG32, section 6.6. On first aid and preliminary medical management, see for example the guidance by HMS Monmouth medical officer.
Gulf War syndrome (GWS), also known as Gulf War illnesses (GWI) and chronic multisymptom illness (CMI), is a chronic and multisymptomatic disorder affecting returning military veterans and civilian workers of the 1990–91 Gulf War. A wide range of acute and chronic symptoms have been linked to it, including fatigue, muscle pain, cognitive problems, rashes and diarrhea. Approximately 250,000 of the 697,000 U.S. veterans who served in the 1991 Gulf War are afflicted with enduring chronic multi-symptom illness, a condition with serious consequences. From 1995 to 2005, the health of combat veterans worsened in comparison with nondeployed veterans, with the onset of more new chronic diseases, functional impairment, repeated clinic visits and hospitalizations, chronic fatigue syndrome-like illness, posttraumatic stress disorder, and greater persistence of adverse health incidents. According to a report by the Iraq and Afghanistan Veterans of America, veterans of Iraq and Afghanistan may also suffer from the syndrome.
Suggested causes have included depleted uranium, sarin gas, smoke from burning oil wells, vaccinations, combat stress and psychological factors.
The U.S. Department of Veterans Affairs (VA) describes Gulf War syndrome as "Gulf War veterans' medically unexplained illnesses" and refers to it as chronic multisymptom illness (CMI) and undiagnosed illnesses. The VA also explains that it doesn't use the term "Gulf War syndrome" when referring to medically unexplained symptoms reported by Gulf War veterans because the symptoms vary widely.
Due to the variety of symptoms and organ system involvement with SLE, its severity in an individual must be assessed in order to successfully treat SLE. Mild or remittent disease may, sometimes, be safely left untreated. If required, nonsteroidal anti-inflammatory drugs and antimalarials may be used. Medications such as prednisone, mycophenolic acid and tacrolimus have been used in the past.
The treatment of SLE involves preventing flares and reducing their severity and duration when they occur.
Treatment can include corticosteroids and anti-malarial drugs. Certain types of lupus nephritis such as diffuse proliferative glomerulonephritis require intermittent cytotoxic drugs. These drugs include cyclophosphamide and mycophenolate.
Hydroxychloroquine was approved by the FDA for lupus in 1955. Some drugs approved for other diseases are used for SLE 'off-label'. In November 2010, an FDA advisory panel recommended approving belimumab (Benlysta) as a treatment for the pain and flare-ups common in lupus. The drug was approved by the FDA in March 2011.