Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antibiotics are the first line of treatment in acute prostatitis. Antibiotics usually resolve acute prostatitis infections in a very short time, however a minimum of two to four weeks of therapy is recommended to eradicate the offending organism completely. Appropriate antibiotics should be used, based on the microbe causing the infection. Some antibiotics have very poor penetration of the prostatic capsule, others, such as ciprofloxacin, trimethoprim/sulfamethoxazole, and tetracyclines such as doxycycline penetrate prostatic tissue well. In acute prostatitis, penetration of the prostate is not as important as for category II because the intense inflammation disrupts the prostate-blood barrier. It is more important to choose a bactericidal antibiotic (kills bacteria, e.g., a fluoroquinolone antibiotic) rather than a bacteriostatic antibiotic (slows bacterial growth, e.g. tetracycline) for acute potentially life-threatening infections.
Severely ill patients may need hospitalization, while nontoxic patients can be treated at home with bed rest, analgesics, stool softeners, and hydration. Men with acute prostatitis complicated by urinary retention are best managed with a suprapubic catheter or intermittent catheterization. Lack of clinical response to antibiotics should raise the suspicion of an abscess and prompt an imaging study such as a transrectal ultrasound (TRUS).
Antibiotic therapy has to overcome the blood/prostate barrier that prevents many antibiotics from reaching levels that are higher than minimum inhibitory concentration. A blood-prostate barrier restricts cell and molecular movement across the rat ventral prostate epithelium. Treatment requires prolonged courses (4–8 weeks) of antibiotics that penetrate the prostate well. The fluoroquinolones, tetracyclines and macrolides have the best penetration. There have been contradictory findings regarding the penetrability of nitrofurantoin , quinolones (ciprofloxacin, levofloxacin), sulfas (Bactrim, Septra), doxycycline and macrolides (erythromycin, clarithromycin). This is particularly true for gram-positive infections.
In a review of multiple studies, Levofloxacin (Levaquin) was found to reach prostatic fluid concentrations 5.5 times higher than Ciprofloxacin, indicating a greater ability to penetrate the prostate.
Persistent infections may be helped in 80% of patients by the use of alpha blockers (tamsulosin (Flomax), alfuzosin), or long term low dose antibiotic therapy. Recurrent infections may be caused by inefficient urination (benign prostatic hypertrophy, neurogenic bladder), prostatic stones or a structural abnormality that acts as a reservoir for infection.
In theory, the ability of some strains of bacteria to form biofilms might be one factor amongst others to facilitate development of chronic bacterial prostatitis.
Escherichia coli extract and cranberry have a potentially preventive effect on the development of chronic bacterial prostatitis, while combining antibiotics with saw palmetto, lactobacillus sporogens and arbutin may lead to better treatment outcomes.
Bacteriophages hold promise as another potential treatment for chronic bacterial prostatatis.
The addition of prostate massage to courses of antibiotics was previously proposed as being beneficial and prostate massage may mechanically break up the biofilm and enhance the drainage of the prostate gland. However, in more recent trials, this was not shown to improve outcome compared to antibiotics alone.
Over time, the relapse rate is high, exceeding 50%. However, recent research indicates that combination therapies offer a better prognosis than antibiotics alone.
A 2007 study showed that repeated combination pharmacological therapy with antibacterial agents (ciprofloxacin/azithromycin), alpha-blockers (alfuzosin) and Serenoa repens extracts may eradicate infection in 83.9% of patients with clinical remission extending throughout a follow-up period of 30 months for 94% of these patients.
A 2014 study of 210 patients randomized into two treatment groups found that recurrence occurred within 2 months in 27.6% of the group using antibiotics alone (prulifloxacin 600 mg), but in only 7.8% of the group taking prulifloxacin in combination with Serenoa repens extract, Lactobacillus Sporogens and Arbutin.
The mainstay of treatment is antibiotics. Phenazopyridine is occasionally prescribed during the first few days in addition to antibiotics to help with the burning and urgency sometimes felt during a bladder infection. However, it is not routinely recommended due to safety concerns with its use, specifically an elevated risk of methemoglobinemia (higher than normal level of methemoglobin in the blood). Acetaminophen (paracetamol) may be used for fevers. There is no good evidence for the use of cranberry products for treating current infections.
Uncomplicated infections can be diagnosed and treated based on symptoms alone. Antibiotics taken by mouth such as trimethoprim/sulfamethoxazole (TMP/SMX), nitrofurantoin, or fosfomycin are typically first line. Cephalosporins, amoxicillin/clavulanic acid, or a fluoroquinolone may also be used. However, resistance to fluoroquinolones among the bacterial that cause urinary infections has been increasing. The FDA recommends against the use of fluoroquinolones when other options are available due to higher risks of serious side effects. These medications substantially shorten the time to recovery with all being equally effective. A three-day treatment with trimethoprim, TMP/SMX, or a fluoroquinolone is usually sufficient, whereas nitrofurantoin requires 5–7 days. Fosfomycin may be used as a single dose but has been associated with lower rates of efficacy.
With treatment, symptoms should improve within 36 hours. About 50% of people will recover without treatment within a few days or weeks. Fluoroquinolones are not recommended as a first treatment. The Infectious Diseases Society of America states this due to the concern of generating resistance to this class of medication. Amoxicillin-clavulanate appears less effective than other options. Despite this precaution, some resistance has developed to all of these medications related to their widespread use. Trimethoprim alone is deemed to be equivalent to TMP/SMX in some countries. For simple UTIs, children often respond to a three-day course of antibiotics. Women with recurrent simple UTIs may benefit from self-treatment upon occurrence of symptoms with medical follow-up only if the initial treatment fails.
People with acute pyelonephritis that is accompanied by high fever and leukocytosis are typically admitted to the hospital for intravenous hydration and intravenous antibiotic treatment. Treatment is typically initiated with an intravenous fluoroquinolone, an aminoglycoside, an extended-spectrum penicillin or cephalosporin, or a carbapenem. Combination antibiotic therapy is often used in such situations. The treatment regimen is selected based on local resistance data and the susceptibility profile of the specific infecting organism(s).
During the course of antibiotic treatment, serial white blood cell count and temperature are closely monitored. Typically, the intravenous antibiotics are continued until the person has no fever for at least 24 to 48 hours, then equivalent antibiotics by mouth can be given for a total of 2–week duration of treatment. Intravenous fluids may be administered to compensate for the reduced oral intake, insensible losses (due to the raised temperature) and vasodilation and to optimize urine output. Percutaneous nephrostomy or ureteral stent placement may be indicated to relieve obstruction caused by a stone. Children with acute pyelonephritis can be treated effectively with oral antibiotics (cefixime, ceftibuten and amoxicillin/clavulanic acid) or with short courses (2 to 4 days) of intravenous therapy followed by oral therapy. If intravenous therapy is chosen, single daily dosing with aminoglycosides is safe and effective.
Treatment of xanthogranulomatous pyelonephritis involves antibiotics as well as surgery. Removal of the kidney is the best surgical treatment in the overwhelming majority of cases, although polar resection (partial nephrectomy) has been effective for some people with localized disease. Watchful waiting with serial imaging may be appropriate in rare circumstances.
In people who do not require hospitalization and live in an area where there is a low prevalence of antibiotic-resistant bacteria, an fluoroquinolone by mouth such as ciprofloxacin or levofloxacin is an appropriate initial choice for therapy. In areas where there is a higher prevalence of fluoroquinolone resistance, it is useful to initiate treatment with a single intravenous dose of a long-acting antibiotic such as ceftriaxone or an aminoglycoside, and then continuing treatment with a fluoroquinolone. Oral trimethoprim/sulfamethoxazole is an appropriate choice for therapy if the bacteria is known to be susceptible. If trimethoprim/sulfamethoxazole is used when the susceptibility is not known, it is useful to initiate treatment with a single intravenous dose of a long-acting antibiotic such as ceftriaxone or an aminoglycoside. Oral beta-lactam antibiotics are less effective than other available agents for treatment of pyelonephritis. Improvement is expected in 48 to 72 hours.
No treatment required. It is standard practice for men with infertility and category IV prostatitis to be given a trial of antibiotics and/or anti-inflammatories, although evidence of efficacy are weak. Since signs of asymptomatic prostatic inflammation may sometimes be associated with prostate cancer, this can be addressed by tests that assess the ratio of free-to-total PSA. The results of these tests were significantly different in prostate cancer and category IV prostatitis in one study.
A number of medications can be used to treat this disorder. Alpha blockers and/or antibiotics appear to be the most effective with NSAIDs such as ibuprofen providing lesser benefit.
- Treatment with antibiotics is controversial. Some have found benefits in symptoms while others have questioned the utility of a trial of antibiotics. Antibiotics are known to have anti-inflammatory properties and this has been suggested as an explanation for their partial efficacy in treating CPPS. Antibiotics such as fluoroquinolones, tetracyclines, and macrolides have direct anti-inflammatory properties in the absence of infection, blocking inflammatory chemical signals (cytokines) such as interleukin-1 (IL-1), interleukin-8 and tumor necrosis factor (TNF), which coincidentally are the same cytokines found to be elevated in the semen and EPS of men with chronic prostatitis.
- The effectiveness of alpha blockers (tamsulosin, alfuzosin) is questionable in men with CPPS. A 2006 meta-analysis found that they are moderately beneficial when the duration of therapy was at least 3 months.
- An estrogen reabsorption inhibitor such as mepartricin improves voiding, reduces urological pain and improves quality of life in patients with chronic non-bacterial prostatitis.
- Therapies that have not been properly evaluated in clinical trials although there is supportive anecdotal evidence include gabapentin, benzodiazepines, and amitriptyline.
Transurethral needle ablation of the prostate (TUNA) has been shown to be ineffective in trials.
In cases of viral adenoiditis, treatment with analgesics or antipyretics is often sufficient. Bacterial adenoiditis may be treated with antibiotics, such as amoxicillin - clavulanic acid or a cephalosporin. In case of adenoid hypertrophy, adenoidectomy may be performed to remove the adenoid.
Bladder instillation of medication is one of the main forms of treatment of interstitial cystitis, but evidence for its effectiveness is currently limited. Advantages of this treatment approach include direct contact of the medication with the bladder and low systemic side effects due to poor absorption of the medication. Single medications or a mixture of medications are commonly used in bladder instillation preparations. DMSO is the only approved bladder instillation for IC/BPS yet it is much less frequently used in urology clinics.
A 50% solution of DMSO had the potential to create irreversible muscle contraction. However, a lesser solution of 25% was found to be reversible. Long-term use of DMSO is questionable, as its mechanism of action is not fully understood though DMSO is thought to inhibit mast cells and may have anti-inflammatory, muscle-relaxing, and analgesic effects. Other agents used for bladder instillations to treat interstitial cystitis include: heparin, lidocaine, chondroitin sulfate, hyaluronic acid, pentosan polysulfate, oxybutynin, and botulinum toxin A. Preliminary evidence suggests these agents are efficacious in reducing symptoms of interstitial cystitis, but further study with larger, randomized, controlled clinical trials is needed.
Treatment for both pregnant and non-pregnant women is usually with metronidazole, by mouth once. Caution should be used in pregnancy, especially in the first trimester. Sexual partners, even if they have no symptoms, should also be treated.
For 95-97% of cases, infection is resolved after one dose of metronidazole. Studies suggest that 4-5% of trichomonas cases are resistant to metronidazole, which may account for some “repeat” cases. Without treatment, trichomoniasis can persist for months to years in women, and is thought to improve without treatment in men. Women living with HIV infection have better cure rates if treated for 7 days rather than with one dose.
Topical treatments are less effective than oral antibiotics due to Skene's gland and other genitourinary structures acting as a reservoir.
In a small minority of cases of urethral syndrome, treatment with antibiotics is effective, which indicates that in some cases it may be caused by bacterial infection which does not show up in either urinalysis or urine culture. For chronic urethral syndrome, a long term, low-dose antibiotic treatment is given on a continuous basis or after intercourse each time if intercourse appears to trigger symptoms.
As low oestrogen may also be considered a source for urethral syndrome, hormone replacement therapy, and oral contraceptive pill (birth-control pills) containing oestrogen are also used to treat the symptoms of this condition in women.
Diet modification is often recommended as a first-line method of self-treatment for interstitial cystitis, though rigorous controlled studies examining the impact diet has on interstitial cystitis signs and symptoms are currently lacking. Individuals with interstitial cystitis often experience an increase in symptoms when they consume certain foods and beverages. Avoidance of these potential trigger foods and beverages such as caffeine-containing beverages including coffee, tea, and soda, alcoholic beverages, chocolate, citrus fruits, hot peppers, and artificial sweeteners may be helpful in alleviating symptoms. Diet triggers vary between individuals with IC; the best way for a person to discover his or her own triggers is to use an elimination diet. Sensitivity to trigger foods may be reduced if calcium glycerophosphate and/or sodium bicarbonate is consumed. The foundation of therapy is a modification of diet to help patients avoid those foods which can further irritate the damaged bladder wall.
The mechanism by which dietary modification benefits people with IC is unclear. Integration of neural signals from pelvic organs may mediate the effects of diet on symptoms of IC.
If the tonsillitis is caused by group A streptococcus, then antibiotics are useful, with penicillin or amoxicillin being primary choices. Cephalosporins and macrolides are considered good alternatives to penicillin in the acute setting. A macrolide such as erythromycin is used for people allergic to penicillin. Individuals who fail penicillin therapy may respond to treatment effective against beta-lactamase producing bacteria such as clindamycin or amoxicillin-clavulanate. Aerobic and anaerobic beta lactamase producing bacteria that reside in the tonsillar tissues can "shield" group A streptococcus from penicillins.
Chronic cases may be treated with tonsillectomy (surgical removal of tonsils) as a choice for treatment. Children have had only a modest benefit from tonsillectomy for chronic cases of tonsillitis.
Most sinusitis cases are caused by viruses and resolve without antibiotics. However, if symptoms do not resolve within 10 days, amoxicillin is a reasonable antibiotic to use first for treatment with amoxicillin/clavulanate being indicated when the person's symptoms do not improve after 7 days on amoxicillin alone. A 2012 Cochrane review, however, found only a small benefit between 7 and 14 days, and could not recommend the practice when compared to potential complications and risk of developing resistance. Antibiotics are specifically not recommended in those with mild / moderate disease during the first week of infection due to risk of adverse effects, antibiotic resistance, and cost.
Fluoroquinolones, and a newer macrolide antibiotic such as clarithromycin or a tetracycline like doxycycline, are used in those who have severe allergies to penicillins. Because of increasing resistance to amoxicillin the 2012 guideline of the Infectious Diseases Society of America recommends amoxicillin-clavulanate as the initial treatment of choice for bacterial sinusitis. The guidelines also recommend against other commonly used antibiotics, including azithromycin, clarithromycin, and trimethoprim/sulfamethoxazole, because of growing antibiotic resistance. The FDA recommends against the use of fluoroquinolones when other options are available due to higher risks of serious side effects.
A short-course (3–7 days) of antibiotics seems to be just as effective as the typical longer-course (10–14 days) of antibiotics for those with clinically diagnosed acute bacterial sinusitis without any other severe disease or complicating factors. The IDSA guideline suggest five to seven days of antibiotics is long enough to treat a bacterial infection without encouraging resistance. The guidelines still recommend children receive antibiotic treatment for ten days to two weeks.
The mechanisms of the toxicity of fluoroquinolones have been attributed to their interactions with different receptor complexes, such as blockade of the GABAa receptor complex within the central nervous system, leading to excitotoxic type effects and oxidative stress.
Urinary catheters should be inserted using aseptic technique and sterile equipment (including sterile gloves, drape, sponges, antiseptic and sterile solution), particularly in an acute care setting. Hands should be washed before and after catheter insertion. Overall, catheter use should be minimized in all patients, particularly those at higher risk of CAUTI and mortality (e.g. the elderly or those with impaired immunity).
For unconfirmed acute sinusitis, intranasal corticosteroids have not been found to be better than a placebo either alone or in combination with antibiotics. For cases confirmed by radiology or nasal endoscopy, treatment with corticosteroids alone or in combination with antibiotics is supported. The benefit, however, is small.
There is only limited evidence to support short treatment with oral corticosteroids for chronic rhinosinusitis with nasal polyps.
Products containing multivalent cations, such as aluminium- or magnesium-containing antacids, and products containing calcium, iron or zinc invariably result in marked reduction of oral absorption of fluoroquinolones. Other drugs that interact with fluoroquinolones include sucralfate, probenecid, cimetidine, theophylline, warfarin, antiviral agents, phenytoin, cyclosporine, rifampin, pyrazinamide, and cycloserine.
Administration of quinolone antibiotics to a benzodiazepine dependent individual can precipitate acute benzodiazepine withdrawal symptoms due to quinolones displacing benzodiazepines from their binding site.
Fluoroquinolones have varying specificity for cytochrome P450, and so may have interactions with drugs cleared by those enzymes; the order from most P450-inhibitory to least, is enoxacin > ciprofloxacin > norfloxacin > ofloxacin, levofloxacin, trovafloxacin, gatifloxacin, moxifloxacin.
"C. trachomatis" infection can be effectively cured with antibiotics. Guidelines recommend azithromycin, doxycycline, erythromycin, levofloxacin or ofloxacin. Agents recommended during pregnancy include erythromycin or amoxicillin.
An option for treating sexual partners of those with chlamydia or gonorrhea include patient-delivered partner therapy (PDT or PDPT), which is the practice of treating the sex partners of index cases by providing prescriptions or medications to the patient to take to his/her partner without the health care provider first examining the partner.
Following treatment people should be tested again after three months to check for reinfection.
Evidence from a randomized controlled trials for screening pregnant women who do not have symptoms for infection with trichomoniasis and treating women who test positive for the infection have not consistently shown a reduced risk of preterm birth. Further studies are needed to verify this result and determine the best method of screening. In the US, screening of pregnant women without any symptoms is only recommended in those with HIV as trichomonas infection is associated with increased risk of transmitting HIV to the fetus.
The majority of time treatment is symptomatic. Specific treatments are effective for bacterial, fungal, and herpes simplex infections.