Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
While no genetic syndrome is capable of being cured, treatments are available for some symptoms. External fixators have been used for limbic and facial reconstructions.
Treatments for Glycerol Kinase Deficiency are targeted to treat the symptoms because there are no permanent treatments for this disease. The main way to treat these symptoms is by using corticosteroids, glucose infusion, or mineralocorticoids. Corticosteroids are steroid hormones that are naturally produced in the adrenal glands. These hormones regulate stress responses, carbohydrate metabolism, blood electrolyte levels, as well as other uses. The mineralocorticoids, such as aldosterone control many electrolyte levels and allow the kidneys to retain sodium. Glucose infusion is coupled with insulin infusion to monitor blood glucose levels and keep them stable.
Due to the multitude of varying symptoms of this disease, there is no specific treatment that will cure this disease altogether. The symptoms can be treated with many different treatments and combinations of medicines to try to find the correct combination to offset the specific symptoms. Everyone with Glycerol Kinase Deficiency has varying degrees of symptoms and thereby requires different medicines to be used in combination to treat the symptoms; however, this disease is not curable and the symptoms can only be managed, not treated fully.
There is currently no cure for GAPO syndrome, but some options are available to reduce the symptoms. Nearsightedness, which affects some sufferers of the disease, can be treated by corrective lenses. Unfortunately, optic atrophy as a result of degradation of the optic nerve (common with GAPO syndrome) cannot be corrected. Corticosteroids have been proposed as a treatment for optic nerve atrophy, but their effectiveness is disputed, and no steroid based treatments are currently available.
There is no cure for this syndrome. Treatment is supportive and symptomatic. All children with Mowat–Wilson syndrome required early intervention with speech therapy, occupational therapy and physical therapy.
There is no cure for McLeod syndrome; the treatment is supportive depending on symptoms. Medication may assist with management of epilepsy, and cardiac and psychiatric features, although patients may respond poorly to treatment for chorea.
Successful management of seizures plays a key role in improving quality of life. Antiepileptic medications are the main therapies for seizures; however, it appears that seizures in this syndrome do not respond well to drugs. In the cases reported in literature, numerous new and old antiepileptic drugs have been tried, but no one drug appears to be more efficacious than others. Therefore, no recommendations can be made regarding the selection of the most appropriate antiepileptic drug. As not all cases of ring chromosome 20 syndrome are the same, different individuals may respond to treatment in different ways.Alternates to antiepileptic drug treatment include the ketogenic diet and vagus nerve stimulation but not epilepsy surgery.
Treatments for ATR-16 syndrome depend on the symptoms experienced by any individual. Alpha thalassemia is usually self-limiting, but in some cases may require a blood transfusion or chelating treatment.
The ketogenic diet is a high fat, low carbohydrate diet reserved for intractable childhood epilepsies. There are no published reports on the use of the ketogenic diet in patients with ring chromosome 20 syndrome. However, its efficacy and safety are well established in other difficult to control epilepsy syndromes.
While there is no specific treatment for the underlying genetic cause of LFS; corrective procedures, preventive intervention measures and therapies may be considered in the treatment and management of the many craniofacial, orthopedic and psychiatric problems associated with the disorder. More pressing issues such as cardiac involvement or epileptic seizures should be routinely examined and monitored. Close attention and specialized follow-up care, including neuropshycological evaluation methods and therapies, and special education, should be given to diagnose and prevent psychiatric disorders and related behavioral problems such as psychosis and outbursts of aggression.
Treatment of cause: Due to the genetic cause, no treatment of the cause is possible.
Treatment of manifestations: routine treatment of ophthalmologic, cardiac, and neurologic findings; speech, occupational, and physical therapies as appropriate; specialized learning programs to meet individual needs; antiepileptic drugs or antipsychotic medications as needed.
Surveillance: routine pediatric care; routine developmental assessments; monitoring of specific identified medical issues.
Treatment for Smith–Magenis syndrome relies on managing its symptoms. Children with SMS often require several forms of support, including physical therapy, occupational therapy and speech therapy. Support is often required throughout an affected person's lifetime.
Medication is often used to address some symptoms. Melatonin supplements and trazodone are commonly used to regulate sleep disturbances. In combination with exogenous melatonin, blockade of endogenous melatonin production during the day by the adrenergic antagonist acebutolol can increase concentration, improve sleep and sleep timing and aid in improvement of behaviour. Other medications (such as risperdal) are sometimes used to regulate violent behavior.
Although there is no cure for 13q deletion syndrome, symptoms can be managed, usually with the involvement of a neurologist, rehabilitation physician, occupational therapist, physiotherapist, psychotherapist, nutritionist, special education professional, and/or speech therapist. If the affected child's growth is particularly slow, growth hormone treatment can be used to augment growth. Plastic surgeries can repair cleft palates, and surgical repair or monitoring by a pediatric cardiologist can manage cardiac defects. Some skeletal, neurological, genitourinary, gastrointestinal, and ophthalmic abnormalities can be definitively treated with surgery. Endocrine abnormalities can often be managed medically. Special educators, speech and occupational therapists, and physiotherapists can help a child develop skills in and out of school.
Although there is currently no cure, treatment includes injections of structurally similar compound, N-Carbamoyl-L-glutamate, an analogue of N-Acetyl Glutamate. This analogue likewise activates CPS1. This treatment mitigates the intensity of the disorder.
If symptoms are detected early enough and the patient is injected with this compound, levels of severe mental retardation can be slightly lessened, but brain damage is irreversible.
Early symptoms include lethargy, vomiting, and deep coma.
Therapy can help developmental delays, as well as physiotherapy for the low muscle tone. Exercise and healthy eating can reduce weight gain. Treatments are available for seizures, eczema, asthma, infections, and certain bodily ailments.
Because XLI is caused by a gene mutation or deletion, there is no "cure." One of the aims of treatment is to reduce scaling by removing the excess, flaky scales, and keep the skin hydrated. This can be achieved using a variety of topical creams.
- Keratolytic agents such as Ammonium lactate (Lac-Hydrin) are used to facilitate the release of retained corneocytes.
- Topical isotretinoin
- The topical receptor-selective retinoid tazarotene
Research is ongoing with regard to the use of gene therapy to treat XLI.
No cure is known for 22q11.2 deletion syndrome. Certain individual features are treatable using standard treatments. The key is to identify each of the associated features and manage each using the best available treatments.
For example, in children, it is important that the immune problems are identified early, as special precautions are required regarding blood transfusion and immunization with live vaccines. Thymus transplantation can be used to address absence of the thymus in the rare, so-called "complete" 22q11.2 deletion syndrome. Bacterial infections are treated with antibiotics. Cardiac surgery is often required for congenital heart abnormalities. Hypoparathyroidism causing hypocalcaemia often requires lifelong vitamin D and calcium supplements. Specialty clinics that provide multi-system care allow for individuals with 22q11.2 deletion syndrome to be evaluated for all of their health needs and allow for careful monitoring of the patients. An example of this type of system is the 22q Deletion Clinic at SickKids Hospital in Toronto, Canada, which provides children with 22q11 deletion syndrome ongoing support, medical care and information from a team of health care workers.
In adults, fibrates and statins have been prescribed to treat hyperglycerolemia by lowering blood glycerol levels. Fibrates are a class of drugs that are known as amphipathic carboxylic acids that are often used in combination with Statins. Fibrates work by lowering blood triglyceride concentrations. When combined with statins, the combination will lower LDL cholesterol, lower blood triglycerides and increase HDL cholesterol levels.
If hyperglycerolemia is found in a young child without any family history of this condition, then it may be difficult to know whether the young child has the symptomatic or benign form of the disorder. Common treatments include: a low-fat diet, IV glucose if necessary, monitor for insulin resistance and diabetes, evaluate for Duchenne muscular dystrophy, adrenal insufficiency & developmental delay.
The Genetic and Rare Diseases Information Center (GARD) does not list any treatments at this time.
There has been no treatment discovered for Jacobsen Syndrome until now but the Symptoms can be treated. 56% of children with Jacobsen Syndrome have congenital heart problems to keep them in check a baseline evaluation can be made by a paediatric cardiologist by carrying out an electrocardiogram or echocardiogram. Any problems that are found can be treated then.
Almost all affected children are born with a bleeding disorder, monthly CBT may help ease the problem. Consecutively Platelet transfusion and ddAVP can be carried out. Medication that interferes with platelet count should be avoided and oral contraceptive therapy may be considered for women with heavy bleeding during menses.
Children affected with Jacobsen Syndrome have severe to Moderate intellectual disabilities and cognitive impairment. An evaluation by a neuropsychologist or a behaviour specialist like a Psychiatrist or Psychologist can be performed, including brain imaging like MRI or ERP. Then as deemed appropriate intervention programs can be carried through. Music therapy is very beneficial for language development. According to the age, befitting vision and hearing test can aid in fixing problems related cognition. For problems related to behaviour like ADHD, medication or therapy would be required but a combination of both is more effective. An ophthalmologist should be consulted to treat the eye defects. Play and interactive games encourage the child to speak. Habilitiation in children should begin at an early age. A habilitation team includes professionals with special expertise in how disability affects everyday life, health and development. The entire family is supported to help the affected children and their families adjust better.
Due to its recent discovery, there are currently no existing treatments for Kleefstra syndrome.
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
A typical patient with severe McLeod syndrome that begins in adulthood lives for an additional 5 to 10 years. Patients with cardiomyopathy have elevated risk for congestive heart failure and sudden cardiac death. The prognosis for a normal life span is often good in some patients with mild neurological or cardiac sequelae.
Prader–Willi syndrome has no cure; however, several treatments are in place to lessen the condition's symptoms. During infancy, subjects should undergo therapies to improve muscle strength. Speech and occupational therapy are also indicated. During the school years, children benefit from a highly structured learning environment as well as extra help. The largest problem associated with the syndrome is severe obesity. Access to food must be strictly supervised and limited, usually by installing locks on all food-storage places including refrigerators.
Because hypotonia can be a symptom of PWS, it is vital to provide proper nutrition during infancy. It is also very important to stress physical activity in individuals with PWS for all ages in order to optimize strength and promote a healthy lifestyle.
Prescription of daily recombinant growth hormone injections are indicated for children with PWS. GH supports linear growth and increased muscle mass, and may lessen food preoccupation and weight gain.
Because of severe obesity, obstructive sleep apnea is a common sequela, and a positive airway pressure machine is often needed. There may come a time when a person who has been diagnosed with PWS may have to undergo surgical procedures. One surgery that has proven to be unsuccessful for treating the obesity is gastric bypass. Patients with Prader–Willi syndrome have a very high tolerance to pain; therefore they may be experiencing significant abdominal symptoms such as acute gastritis, appendicitis, or cholecystitis and not be aware of it until later.
Behavior and psychiatric problems should be detected early for the best results. These issues are best when treated with parental education and training. Sometimes medication is introduced as well. Serotonin agonists have been most effective in lessening temper tantrums and improving compulsivity.
At present, treatment for 18p- is symptomatic, meaning that the focus is on treating the signs and symptoms of the conditions as they arise. To ensure early diagnosis and treatment, it is suggested that people with 18p- undergo routine screenings for hearing and vision problems.
Treatments range from platelet transfusions to surgery aimed at either centralizing the hand over the ulna to improve functionality of the hand or aimed at 'normalizing' the appearance of the arm, which is much shorter and 'clubbed.' There is some controversy surrounding the role of surgery. The infant mortality rate has been curbed by new technology, including platelet transfusions, which can even be performed in utero. The critical period is the first and sometimes second year of life. For most people with TAR, platelet counts improve as they grow out of childhood.
Although 1p36 Deletion Syndrome can be debilitating in many ways, patients do respond to various treatments and therapies. These include the following:
American Sign Language: Because few individuals with Monosomy 1p36 develop complex speech, an alternate form of communication is critical to development. Most patients can learn basic signs to communicate their needs and wants. This also appears to reduce frustration and may reduce self-injurious tendencies. Children with hearing loss will often qualify for locally sponsored sign language classes.
Music Therapy: Music has been shown to aid children with 1p36 deletion in various developmental areas. It serves as an excellent auditory stimulus and can teach listening skills. Songs with actions help the child to develop coordination and motor skills.
Physical Therapy: Due to low muscle tone, patients with 1p36 Deletions take a great deal of time to learn to roll over, sit up, crawl and walk. However, regular physical therapy has shown to shorten the length of time needed to achieve each of those developmental milestones.
Occupational Therapy can be helpful to help children with oral motor and feeding difficulties (including dysphagia and transitioning to solid foods) as well as developmental delays in motor, social and sensory domains.