Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of cause: Due to the genetic cause, no treatment of the cause is possible.
Treatment of manifestations: routine treatment of ophthalmologic, cardiac, and neurologic findings; speech, occupational, and physical therapies as appropriate; specialized learning programs to meet individual needs; antiepileptic drugs or antipsychotic medications as needed.
Surveillance: routine pediatric care; routine developmental assessments; monitoring of specific identified medical issues.
There has been no treatment discovered for Jacobsen Syndrome until now but the Symptoms can be treated. 56% of children with Jacobsen Syndrome have congenital heart problems to keep them in check a baseline evaluation can be made by a paediatric cardiologist by carrying out an electrocardiogram or echocardiogram. Any problems that are found can be treated then.
Almost all affected children are born with a bleeding disorder, monthly CBT may help ease the problem. Consecutively Platelet transfusion and ddAVP can be carried out. Medication that interferes with platelet count should be avoided and oral contraceptive therapy may be considered for women with heavy bleeding during menses.
Children affected with Jacobsen Syndrome have severe to Moderate intellectual disabilities and cognitive impairment. An evaluation by a neuropsychologist or a behaviour specialist like a Psychiatrist or Psychologist can be performed, including brain imaging like MRI or ERP. Then as deemed appropriate intervention programs can be carried through. Music therapy is very beneficial for language development. According to the age, befitting vision and hearing test can aid in fixing problems related cognition. For problems related to behaviour like ADHD, medication or therapy would be required but a combination of both is more effective. An ophthalmologist should be consulted to treat the eye defects. Play and interactive games encourage the child to speak. Habilitiation in children should begin at an early age. A habilitation team includes professionals with special expertise in how disability affects everyday life, health and development. The entire family is supported to help the affected children and their families adjust better.
Hearing aids or other amplification devices can be useful for language learning in those with hearing loss. Speech therapy may be useful and is recommended to be started around 9 months of age. As those with Down syndrome typically have good hand-eye coordination, learning sign language may be possible. Augmentative and alternative communication methods, such as pointing, body language, objects, or pictures, are often used to help with communication. Behavioral issues and mental illness are typically managed with counseling or medications.
Education programs before reaching school age may be useful. School-age children with Down syndrome may benefit from inclusive education (whereby students of differing abilities are placed in classes with their peers of the same age), provided some adjustments are made to the curriculum. Evidence to support this, however, is not very strong. In the United States, the Individuals with Disabilities Education Act of 1975 requires public schools generally to allow attendance by students with Down syndrome.
Individuals with Down syndrome may learn better visually. Drawing may help with language, speech, and reading skills. Children with Down syndrome still often have difficulty with sentence structure and grammar, as well as developing the ability to speak clearly. Several types of early intervention can help with cognitive development. Efforts to develop motor skills include physical therapy, speech and language therapy, and occupational therapy. Physical therapy focuses specifically on motor development and teaching children to interact with their environment. Speech and language therapy can help prepare for later language. Lastly, occupational therapy can help with skills needed for later independence.
Tympanostomy tubes are often needed and often more than one set during the person's childhood. Tonsillectomy is also often done to help with sleep apnea and throat infections. Surgery, however, does not always address the sleep apnea and a continuous positive airway pressure (CPAP) machine may be useful. Physical therapy and participation in physical education may improve motor skills. Evidence to support this in adults, however, is not very good.
Efforts to prevent respiratory syncytial virus (RSV) infection with human monoclonal antibodies should be considered, especially in those with heart problems. In those who develop dementia there is no evidence for memantine, donepezil, rivastigmine, or galantamine.
Plastic surgery has been suggested as a method of improving the appearance and thus the acceptance of people with Down syndrome. It has also been proposed as a way to improve speech. Evidence, however, does not support a meaningful difference in either of these outcomes. Plastic surgery on children with Down syndrome is uncommon, and continues to be controversial. The U.S. National Down Syndrome Society views the goal as one of mutual respect and acceptance, not appearance.
Many alternative medical techniques are used in Down syndrome; however, they are poorly supported by evidence. These include: dietary changes, massage, animal therapy, chiropractics and naturopathy, among others. Some proposed treatments may also be harmful.
The outcome of this disease is dependent on the severity of the cardiac defects. Approximately 1 in 3 children with this diagnosis require shunting for the hydrocephaly that is often a consequence. Some children require extra assistance or therapy for delayed psychomotor and speech development, including hypotonia.
Medical Care
- Treatment may be provided on an outpatient basis.
- Cataracts that do not regress or disappear with therapy may require hospitalization for surgical removal.
Surgical Care
- Cataracts may require surgical removal.
Consultations
- Biochemical geneticist
- Nutritionist
- Ophthalmologist
Diet
- Diet is the foundation of therapy. Elimination of lactose and galactose sources suffices for definitive therapy.
Activity
- No restriction is necessary.
(Roth MD, Karl S. 2009)
Regular administration of exogenous granulocyte colony-stimulating factor (filgrastim) clinically improves neutrophil counts and immune function and is the mainstay of therapy, although this may increase risk for myelofibrosis and acute myeloid leukemia in the long term.
Over 90% of SCN responds to treatment with granulocyte colony-stimulating factor (filgrastim), which has significantly improved survival.
On several locations in the world people are studying on the subject of 1q21.1 deletion syndrome. The syndrome was identified for the first time with people with heart abnormalities. The syndrome has later been found with patients with autism and schizophrenia. Research is done on patients with a symptom of the syndrome, to find more patients with the syndrome.
There may be a relation between autism and schizophrenia. Literature shows that nine locations have been found on the DNA where the syndromes related to autism or schizophrenia can be found, the so-called "hotspots": 1q21.1, 3q29, 15q13.3, 16p11.2, 16p13.1, 16q21, 17p12, 21q11.2 and 21q13.3. With a number of hotspots both autism and schizophrenia were observed at that location. In other cases, either autism or schizophrenia has been seen.
Statistical research showed that schizophrenia is more common in combination with 1q21.1 deletion syndrome. On the other side, autism is significantly more common with 1q21.1 duplication syndrome. Further research confirmed that the odds on a relation between schizophrenia and deletions at 1q21.1, 3q29, 15q13.3, 22q11.21 en Neurexin 1 (NRXN1) and duplications at 16p11.2 are at 7.5% or higher.
Common variations in the BCL9 gene, which is in the distal area, confer risk of schizophrenia and may also be associated with bipolar disorder and major depressive disorder.
Research is done on 10–12 genes on 1q21.1 that produce DUF1220-locations. DUF1220 is an unknown protein, which is active in the neurons of the brain near the neocortex. Based on research on apes and other mammals, it is assumed that DUF1220 is related to cognitive development (man: 212 locations; chimpanzee: 37 locations; monkey: 30 locations; mouse: 1 location). It appears that the DUF1220-locations on 1q21.1 are in areas that are related to the size and the development of the brain. The aspect of the size and development of the brain is related to autism (macrocephaly) and schizophrenia (microcephaly). It has been proposed that a deletion or duplication of a gene that produces DUF1220-areas might cause growth and development disorders in the brain
Another relation between macrocephaly with duplications and microcephaly with deletions has been seen in research on the HYDIN Paralog or HYDIN2. This part of 1q21.1 is involved in the development of the brain. It is assumed to be a dosage-sensitive gene. When this gene is not available in the 1q21.1 area, it leads to microcephaly. HYDIN2 is a recent duplication (found only in humans) of the HYDIN gene found on 16q22.2.
Research on the genes CHD1L and PRKAB2 within lymphoblast cells lead to the conclusion that anomalies appear with the 1q21.1-deletionsyndrome:
- CHD1L is an enzyme which is involved in untangling the chromatides and the DNA repair system. With 1q21.1 deletion syndrome a disturbance occurs, which leads to increased DNA breaks. The role of CHD1L is similar to that of helicase with the Werner syndrome
- PRKAB2 is involved in maintaining the energy level of cells. With 1q21.1-deletion syndrome this function was attenuated.
GJA5 has been identified as the gene that is responsible for the phenotypes observed with congenital heart diseases on the 1q21.1 location. In case of a duplication of GJA5 tetralogy of Fallot is more common. In case of a deletion other congenital heart diseases than tetralogy of Fallot are more common.
Several researchers around the world are studying on the subject of 1q21.1 duplication syndrome. The syndrome was identified for the first time in people with heart abnormalities. The syndrome was later observed in patients who had autism or schizophrenia.
It appears that there is a relation between autism and schizophrenia. Literature shows that nine locations have been found on the DNA where the syndromes related to autism or schizophrenia can be found, the so-called "hotspots": 1q21.1, 3q29, 15q13.3, 16p11.2, 16p13.1, 16q21, 17p12, 21q11.2 and 21q13.3. With a number of hotspots both autism and schizophrenia were observed at that location. In other cases, either autism or schizophrenia has been seen, while they are searching for the opposite.
Statistical research showed that schizophrenia is significantly more common in combination with 1q21.1 deletion syndrome. On the other side, autism is significantly more common with 1q21.1 duplication syndrome. Similar observations were done for chromosome 16 on 16p11.2 (deletion: autism/duplication: schizophrenia), chromosome 22 on 22q11.21 (deletion (Velo-cardio-facial syndrome): schizophrenia/duplication: autism) and 22q13.3 (deletion (Phelan-McDermid syndrome): schizophrenia/duplication: autism). Further research confirmed that the odds on a relation between schizophrenia and deletions at 1q21.1, 3q29, 15q13.3, 22q11.21 en Neurexin 1 (NRXN1) and duplications at 16p11.2 are at 7.5% or higher.
Common variations in the BCL9 gene, which is in the distal area, confer risk of schizophrenia and may also be associated with bipolar disorder and major depressive disorder.
Research is done on 10-12 genes on 1q21.1 that produce DUF1220-locations. DUF1220 is an unknown protein, which is active in the neurons of the brain near the neocortex. Based on research on apes and other mammals, it is assumed that DUF1220 is related to cognitive development (man: 212 locations; chimpanzee: 37 locations; monkey: 30 locations; mouse: 1 location). It appears that the DUF1220-locations on 1q21.1 are in areas that are related to the size and the development of the brain. The aspect of the size and development of the brain is related to autism (macrocephaly) and schizophrenia (microcephaly). It is assumed that a deletion or a duplication of a gene that produces DUF1220-areas might cause growth and development disorders in the brain
Another relation between macrocephaly with duplications and microcephaly with deletions has been seen in research on the HYDIN Paralog or HYDIN2. This part of 1q21.1 is involved in the development of the brain. It is assumed to be a dosage-sensitive gene. When this gene is not available in the 1q21.1 area it leads to microcephaly. HYDIN2 is a recent duplication (found only in humans) of the HYDIN gene found on 16q22.2.
GJA5 has been identified as the gene that is responsible for the phenotypes observed with congenital heart diseases on the 1q21.1 location. In case of a duplication of GJA5 tetralogy of Fallot is more common. In case of a deletion other congenital heart diseases than tetralogy of Fallot are more common.
Exposure of spermatozoa to lifestyle, environmental and/or occupational hazards may increase the risk of aneuploidy. Cigarette smoke is a known aneugen (aneuploidy inducing agent). It is associated with increases in aneuploidy ranging from 1.5 to 3.0-fold. Other studies indicate factors such as alcohol consumption, occupational exposure to benzene, and exposure to the insecticides fenvalerate and carbaryl also increase aneuploidy.
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
Polar body diagnosis (PBD) can be use to detect maternally derived chromosomal aneuploidies as well as translocations in oocytes. The advantage of PBD over PGD is that it can be accomplished in a short amount of time. This is accomplished through zona drilling or laser drilling.
1q21.1 duplication syndrome or 1q21.1 (recurrent) microduplication is a rare aberration of chromosome 1.
In a common situation a human cell has one pair of identical chromosomes on chromosome 1. With the 1q21.1 duplication syndrome one chromosome of the pair is over complete, because a part of the sequence of the chromosome is duplicated twice or more. In 1q21.1, the '1' stands for chromosome 1, the 'q' stands for the long arm of the chromosome and '21.1' stands for the part of the long arm in which the duplication is situated.
Next to the duplication syndrome, there is also a 1q21.1 deletion syndrome. While there are two or three copies of a similar part of the DNA on a particular spot with the duplication syndrome, there is a part of the DNA missing with the deletion syndrome on the same spot. Literature refers to both the deletion and the duplication as the 1q21.1 copy-number variations (CNV).
The CNV leads to a very variable phenotype and the manifestations in individuals are quite variable. Some people who have the syndrome can function in a normal way, while others have symptoms of mental retardation and various physical anomalies.
Although patients can receive intensive antibiotherapy and even granulocyte transfusions from healthy donors, the only current curative therapy is the hematopoietic stem cell transplant. However, progress has been made in gene therapy, an active area of research. Both foamyviral and lentiviral vectors expressing the human ITGB2 gene under the control of different promoters have been developed and have been tested so far in preclinical LAD-I models (such as CD18-deficient mice and canine leukocyte adhesion deficiency-affected dogs).
Treatment for X-linked SCID can be divided into two main groups, the prophylactic treatment (i.e. preventative) and curative treatment. The former attempts to manage the opportunistic infections common to SCID patients and the latter aims at reconstituting healthy T-lymphocyte function.
From the late 60s to early 70s, physicians began using "bubbles", which were plastic enclosures used to house newborns suspected to have SCIDS, immediately after birth. The bubble, a form of isolation, was a sterile environment which meant the infant would avoid infections caused by common and lethal pathogens. On the other hand, prophylactic treatments used today for X-linked SCID are similar to those used to treat other primary immunodeficiencies. There are three types of prophylactic treatments, namely, the use of medication, sterile environments, and intravenous immunoglobulin therapy (IVIG). First, antibiotics or antivirals are administered to control opportunistic infections, such as fluconazole for candidiasis, and acyclovir to prevent herpes virus infection. In addition, the patient can also undergo intravenous immunoglobulin (IVIG) supplementation. Here, a catheter is inserted into the vein and a fluid, containing antibodies normally made by B-cells, is injected into the patient's body. Antibodies, Y-shaped proteins created by plasma cells, recognize and neutralize any pathogens in the body. However, the IVIG is expensive, in terms of time and finance. Therefore, the aforementioned treatments only prevent the infections, and are by no means a cure for X-linked SCID.
Bone marrow transplantation (BMT) is a standard curative procedure and results in a full immune reconstitution, if the treatment is successful. Firstly, a bone marrow transplant requires a human leukocyte antigen (HLA) match between the donor and the recipient. The HLA is distinct from person to person, which means the immune system utilizes the HLA to distinguish self from foreign cells. Furthermore, a BMT can be allogenic or autologous, which means the donor and recipient of bone marrow can be two different people or the same person, respectively. The autologous BMT involves a full HLA match, whereas, the allogenic BMT involves a full or half (haploidentical) HLA match. Particularly, in the allogenic BMT the chances of graft-versus-host-disease occurring is high if the match of the donor and recipient is not close enough. In this case, the T-cells in the donor bone marrow attack the patient's body because the body is foreign to this graft. The depletion of T-cells in the donor tissue and a close HLA match will reduce the chances of graft-versus-host disease occurring. Moreover, patients who received an exact HLA match had normal functioning T-cells in fourteen days. However, those who received a haploidentical HLA match, their T-cells started to function after four months. In addition, the reason BMT is a permanent solution is because the bone marrow contains multipotent hematopoietic stem cells which become common lymphoid or common myeloid progenitors. In particular, the common lymphoid progenitor gives rise to the lymphocytes involved in the immune response (B-cell, T-cell, natural killer cell). Therefore, a BMT will result in a full immune reconstitution but there are aspects of BMT that need to be improved (i.e. GvHD).
Gene therapy is another treatment option which is available only for clinical trials. X-linked SCID is a monogenic disorder, the IL2RG gene is mutated, so gene therapy will replace this mutated gene with a normal one. This will result in a normal functioning gamma chain protein of the interleukin receptor. In order to transfer a functional gene into the target cell, viral or non-viral vectors can be employed. Viral vectors, such as the retrovirus, that incorporate the gene into the genome result in long-term effects. This, coupled with the bone marrow stem cells, has been successful in treating individuals with X-SCID. In one particular trial by Cavazzana-Calvo et al., ten children were treated with gene therapy at infancy for X-SCID. Nine of the ten were cured of X-SCID. However, about three years after treatment, two of the children developed T-cell leukemia due to insertion of the IL2RG gene near the LMO2 gene and thereby activating the LMO2 gene (a known oncogene). A third child developed leukemia within two years of that study being published, likely as a direct result of the therapy. This condition is known as insertional mutagenesis, where the random insertion of a gene interferes with the tumor suppressor gene or stimulates an oncogene. There is currently no approved gene therapy on the market, but there are many clinical trials into which X-SCID patients may enroll. Therefore, research in the field of gene therapy today and in the future is needed to avoid the occurrence of leukemia. In particular, research into the use of insulator and suicide genes is warranted as this may prevent cancer from developing. The insulator gene inhibits the activation of adjacent genes. On the other hand, the suicide gene is stimulated when a tumour begins to form, and this will result in the deactivation of the therapeutic gene. Moreover, the use of restriction enzymes such as the zinc-finger nuclease (ZFN) is being studied. The ZFN allows the researcher to choose the site of gene integration. Vector safety is important in the field of gene therapy, hence vectors that self-inactivate the promoter and enhancer (SIN) and adenoviruses that creates no immune response are prominent areas of research for vector biologists.
Ayazi syndrome (or Chromosome 21 Xq21 deletion syndrome) is a syndrome characterized by choroideremia, congenital deafness and obesity.
Jacobsen Syndrome is a rare chromosomal disorder resulting from deletion of genes from chromosome 11 that includes band 11q24.1. It is a congenital disorder. Since the deletion takes place on the q arm of chromosome 11, it is also called 11q terminal deletion disorder. The deletion may range from 5 million to 16 million deleted DNA base pairs. The severity of symptoms depends on the number of deletions. The more deletions there are more severe the symptoms are likely to be. People with Jacobsen syndrome have serious intellectual disabilities, dysmorphic features, delayed development and a variety of physical problems including heart defects. Research shows that almost 88.5% of people with Jacobsen Syndrome have a bleeding disorder called Paris-Trousseau syndrome. [ Jacobsen Syndrome is catastrophic in 1 out of every 5 cases, since children usually die within the first 2 years of life due to heart complications.
X-linked SCID is a known pediatric emergency which primarily affects males. If the appropriate treatment such as intravenous immunoglobulin supplements, medications for treating infections or a bone marrow transplant is not administered, then the prognosis is poor. The patients with X-linked SCID usually die two years after they are born. For this reason, the diagnosis of X-linked SCID needs to be done early to prevent any pathogens from infecting the infant.
However, the patients have a higher chance of survival if the diagnosis of X-linked SCID is done as soon as the baby is born. This involves taking preventative measures to avoid any infections that can cause death. For example, David Vetter had a high chance of having X-linked SCID because his elder sibling had died due to SCID. This allowed the doctors to place David in the bubble and prevented infections. In addition, if X-linked SCID is known to affect a child, then live vaccines should not be administered and this can save the infants life. Vaccines, which are pathogens inserted into the body to create an immune response, can lead to death in infants with X-linked SCID. Moreover, with proper treatments, such as a bone marrow transplant, the prognosis is good. The bone marrow transplant has been successful in treating several patients and resulted in a full immune reconstitution and the patient can live a healthy life. The results of bone marrow transplant are most successful when the closest human leukocyte antigen match has been found. If a close match is not found, however, there is a chance of graft-versus-host-disease which means the donor bone marrow attacks the patient's body. Hence, a close match is required to prevent any complications.
It has been suggested that a possible method of treatment for histidinemia is through the adoption of a diet that is low in histidine intake. However, the requirement for such dietary restrictions is typically unnecessary for 99% of all cases of histidinemia.
Ayazi syndrome's inheritance pattern is described as x-linked recessive. Genes known to be deleted are CHM and POU3F4, both located on the Xq21 locus.
Diploid-triploid mosaicism (DTM) is a chromosome disorder. Individuals with diploid-triploid syndrome have some cells with three copies of each chromosome for a total of 69 chromosomes (called triploid cells) and some cells with the usual 2 copies of each chromosome for a total of 46 chromosomes (called diploid cells).
Having two or more different cell types is called mosaicism. Diploid-triploid mosaicism can be associated with truncal obesity, body/facial asymmetry, weak muscle tone (hypotonia), delays in growth, mild differences in facial features, fusion or webbing between some of the fingers and/or toes (syndactyly) and irregularities in the skin pigmentation.
Intellectual disabilities may be present but are highly variable from person to person ranging from mild to more severe.
The chromosome disorder is usually not present in the blood; a skin biopsy, or analyzing cells in the urine is needed to detect the triploid cells.
A regular human carries 23 pairs of chromosomes in his or her cells. Cells containing two pairs of chromosomes are known as diploid cells. Those with diploid triploid mosaicism have some cells which are triploid, meaning that they have three copies of chromosomes, or a total of 69 chromosomes. Triploidy is distinct from trisomy, in which only one chromosome exists in three pairs. A well-known example of trisomy is trisomy 21 or Down syndrome.
Autoimmune polyendocrine syndrome type 1 treatment is based on the symptoms that are presented by the affected individual, additionally there is:
- Hormone replacement
- Systemic antifungal treatment
- Immunosuppressive treatment
Naegeli–Franceschetti–Jadassohn syndrome (NFJS), also known as chromatophore nevus of Naegeli and Naegeli syndrome, is a rare autosomal dominant form of ectodermal dysplasia, characterized by reticular skin pigmentation, diminished function of the sweat glands, the absence of teeth and hyperkeratosis of the palms and soles. One of the most striking features is the absence of fingerprint lines on the fingers.
Naegeli syndrome is similar to dermatopathia pigmentosa reticularis, both of which are caused by a specific defect in the keratin 14 protein.
If treatment is initiated early in disease the neurologic sequelae may be reversed and further deterioration can be prevented.
Treatment normally consists of rigorous dieting, involving massive amounts of vitamin E. Vitamin E helps the body restore and produce lipoproteins, which people with abetalipoprotenimia usually lack. Vitamin E also helps keep skin and eyes healthy; studies show that many affected males will have vision problems later on in life. Developmental coordination disorder and muscle weakness are usually treated with physiotherapy or occupational therapy. Dietary restriction of triglycerides has also been useful.