Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment depends on whether the aneurysm is ruptured and may involve a combination of antimicrobial drugs, surgery and/or endovascular treatment.
Head circumference measurements should be obtained regularly and monitored carefully to detect hydrocephalus. Neurosurgical procedures to relieve hydrocephalus are important. A ventriculoperitoneal shunt may be required in some infants. A pediatric cardiologist should be consulted to manage high-output failure, if present. Often patients need to be intubated. In most cases, the fistulous arteries feeding into the Vein of Galen must be blocked, thereby reducing the blood flow into the vein. Open surgery has a high morbidity and mortality. Recent advances over the past few decades have made endovascular embolization the preferred method of treatment. These treatments are preferred because they offer little threat to the surrounding brain tissue. However, there have been several reported cases of arteriovenous malformations recurring. The young age of many patients, the complex vascular anatomy, and the sensitive location of the Vein of Galen offer considerable challenges to surgeons. Another treatment option is Radiotherapy. Radiotherapy, also called radiosurgery, involves the use of focused beams to damage the blood vessel. Radiotherapy is often not pursued as a treatment because the effects of the procedure can take months or years and there is risk of damaging adjacent brain tissue.
Surgery is not always an option when the anatomy of the malformation creates too much of a risk. Recent improvements in endovascular procedures have made many cases, which were not surgically accessible, treatable. Endovascular treatments involve delivering drugs, balloons, or coils to the site of the malformation through blood vessels via catheters. These treatments work by limiting blood flow through the vein. There is, however, still risk of complications from endovascular treatments. The wall of the vein can be damaged during the procedure and, in some cases, the emboli can become dislodged and travel through the vascular system. Two-dimensional echocardiography with color-flow imaging and pulsed Doppler ultrasound was used to evaluate one fetus and five neonates with a Vein of Galen malformation. Color-flow imaging and pulsed Doppler ultrasonography provided anatomical and pathophysiological information regarding cardiac hemodynamics and intracranial blood flow; with the patient's clinical status, these methods provided a reliable, noninvasive means to evaluate the effectiveness of therapy and the need for further treatment in neonates with Vein of Galen malformations. When none of these procedures are viable, shunting can be used to ameliorate the pressure inside the varix. Seizures usually are managed with antiepileptic medications.
Traumatic aortic rupture is treated with surgery. However, morbidity and mortality rates for surgical repair of the aorta for this condition are among the highest of any cardiovascular surgery. For example, surgery is associated with a high rate of paraplegia, because the spinal cord is very sensitive to ischemia (lack of blood supply), and the nerve tissue can be damaged or killed by the interruption of the blood supply during surgery.
A less invasive option for treatment is endovascular repair, which does not require open thoracotomy and can be safer for people with other injuries to organs.
Since high blood pressure could exacerbate an incomplete tear in the aorta or even separate it completely from the heart, which would almost inevitably kill the patient, hospital staff take measures to keep the blood pressure low. Such measures include giving pain medication, keeping the patient calm, and avoiding procedures that could cause gagging or vomiting. Beta blockers and vasodilators can be given to lower the blood pressure, and intravenous fluids that might normally be given are foregone to avoid raising it.
Emergency treatment for individuals with a ruptured cerebral aneurysm generally includes restoring deteriorating respiration and reducing intracranial pressure. Currently there are two treatment options for securing intracranial aneurysms: surgical clipping or endovascular coiling. If possible, either surgical clipping or endovascular coiling is usually performed within the first 24 hours after bleeding to occlude the ruptured aneurysm and reduce the risk of rebleeding.
While a large meta-analysis found the outcomes and risks of surgical clipping and endovascular coiling to be statistically similar, no consensus has been reached. In particular, the large randomised control trial International Subarachnoid Aneurysm Trial appears to indicate a higher rate of recurrence when intracerebral aneurysms are treated using endovascular coiling. Analysis of data from this trial has indicated a 7% lower eight-year mortality rate with coiling, a high rate of aneurysm recurrence in aneurysms treated with coiling—from 28.6-33.6% within a year, a 6.9 times greater rate of late retreatment for coiled aneurysms, and a rate of rebleeding 8 times higher than surgically-clipped aneurysms.
CNV is conventionally treated with intravitreal injections of angiogenesis inhibitors (also known as "anti-VEGF" drugs) to control neovascularization and reduce the area of fluid below the retinal pigment epithelium. Angiogenesis inhibitors include pegaptanib, ranibizumab and bevacizumab (known by a variety of trade names, such as Macugen, Avastin or Lucentis). These inhibitors slow or stop the formation of new blood vessels (angiogenesis), typically by binding to or deactivating the transmission of vascular endothelial growth factor ('VEGF'), a signal protein produced by cells to stimulate formation of new blood vessels. The effectiveness of angiogenesis inhibitors has been shown to significantly improve visual prognosis with CNV, the recurrence rate for these neovascular areas remains high.
CNV may also be treated with photodynamic therapy coupled with a photosensitive drug such as verteporfin (Visudyne). The drug is given intravenously. It is then activated in the eye by a laser light. The drug destroys the new blood vessels, and prevents any new vessels forming by forming thrombi.
Aneurysms can be treated by clipping the base of the aneurysm with a specially-designed clip. Whilst this is typically carried out by craniotomy, a new endoscopic endonasal approach is being trialled. Surgical clipping was introduced by Walter Dandy of the Johns Hopkins Hospital in 1937
After clipping, a catheter angiogram or CTA can be performed to confirm complete clipping.
Aortic ruptures can be repaired surgically via open aortic surgery or using endovascular therapy (EVAR), regardless of cause, just as non-ruptured aortic aneurysms are repaired. An aortic occlusion balloon can be placed to stabilize the patient and prevent further blood loss prior to the induction of anesthesia.
Historically, the treatment of arterial aneurysms has been limited to either surgical intervention, or watchful waiting in combination with control of blood pressure. In recent years, endovascular or minimally invasive techniques have been developed for many types of aneurysms. Aneurysm Clips are used for surgical procedure i.e. clipping of aneurysms.
It is important to distinguish between treatment of the underlying inflammation (PIC) and the treatment of CNV.
2-pronged approach:
Treatment is not always necessary and observation may be appropriate for lesions if they are found in non-sight threatening areas (that is not centrally).
Active lesions of PIC can be treated with corticosteroids taken systemically (tablets) or regionally by injections around the eye (periorbital). It has been argued that treating lesions in this way may help minimise the development of CNV.
The treatment of CNV:
Early treatment is required for this complication. There are several possible treatment methods, but none of these treatments appears to be singly effective for the treatment of CNV.
1. Corticosteroids: systemic or intraocular
2. ‘Second line’ immunosuppressants: There is evidence that combined therapies of steroids and second line immunosuppressants may be important.
3. Surgical excision of the affected area in well selected cases.
4. Intravitreal anti-VEGF agents. Examples are bevacizumab (avastin) and ranibizumab. These relatively new drugs are injected into the eye.
5. Photodynamic therapy (PDT): A photosensitive drug is ‘activated’ by strong light. Consideration may be given to combined therapy of PDT and anti VEGF.
6. Laser photocoagulation: This is occasionally used unless the CNV is subfoveal (affecting the central or macular part of the vision). The laser treatment can damage the vision.
The use of the intravitreal anti VEGF agents namely bevacizumab and ranibizumab have been described recently. The current evidence supporting the use of anti-VEGF agents is based on retrospective case studies and could not be described as strong. However, further data from prospective controlled trials are needed before the therapeutic role of anti-VEGF therapy in the uveitis treatment regimen can be fully determined. The anti VEGF agents furthermore have not been shown to have an anti-inflammatory effect.
Thus, treatment of the underlying inflammatory disease should play a central role in the management of uveitic CNV. A two-pronged treatment that focuses on achieving control of inflammation through the use of corticosteroids and/or immunosuppressive agents, while treating
complications that arise despite adequate disease control with intravitreal anti-VEGF agents, may be useful.
Regular monitoring is essential to achieve a good outcome. This is because even if there is no active inflammation, there may still be occult CNV which requires treatment to avoid suffering vision loss.
If diagnosed within the first few hours of presentation, the pooling blood may be evacuated using a syringe. Once the blood has clotted, removal by this method is no longer possible and the clot can be removed via an incision over the lump under local anesthetic. The incision is not stitched, but will heal very well. Care needs to be taken in regard to bleeding from the wound and possible infection with fecal bacteria. If left alone it will usually heal within a few days or weeks. The topical application of a cream containing a Heparinoid is often advised to clear the clot .
Treatment requires careful consideration of angiographic findings when a choroidal neovascular membrane is suspected which is a condition that responds to treatment. A vitreo-retinal specialist (an ophthalmologist specialized in treatment of retinal diseases) should be consulted for proper management of the case.
Presumed ocular histoplasmosis syndrome and age-related macular degeneration (AMD) have been successfully treated with laser, anti-vascular endothelial growth factors and photodynamic therapy. Ophthalmologists are using anti-vascular endothelial growth factors to treat AMD and similar conditions since research indicates that vascular endothelial growth factor (VEGF) is one of the causes for the growth of the abnormal vessels that cause these conditions.
The treatment options for asymptomatic AAA are management, surveillance with a view to eventual repair, and immediate repair. Two modes of repair are available for an AAA: open aneurysm repair, and endovascular aneurysm repair (EVAR). An intervention is often recommended if the aneurysm grows more than 1 cm per year or it is bigger than 5.5 cm. Repair is also indicated for symptomatic aneurysms.
There are currently two treatment options for brain aneurysms: surgical clipping or endovascular coiling. There is currently debate in the medical literature about which treatment is most appropriate given particular situations.
Surgical clipping was introduced by Walter Dandy of the Johns Hopkins Hospital in 1937. It consists of a craniotomy to expose the aneurysm and closing the base or neck of the aneurysm with a clip. The surgical technique has been modified and improved over the years.
Endovascular coiling was introduced by Guido Guglielmi at UCLA in 1991. It consists of passing a catheter into the femoral artery in the groin, through the aorta, into the brain arteries, and finally into the aneurysm itself. Platinum coils initiate a clotting reaction within the aneurysm that, if successful fill the aneurysm dome and prevent its rupture. Flow diverter can be used but not without complications sometimes.
Treatment is based
on the stage of the disease. Stage 1 does not
require treatment and
should be observed. 4
Neovascularization
(stage 2) responds well
to laser ablation or
cryotherapy.2,4 Eyes
with retinal detachments (stages
3 through 5) require surgery, with
earlier stages requiring scleral
buckles and later stages ultimately
needing vitrectomy. 2,4
More recently, the efficacy of
anti-VEGF intravitreal injections
has been studied. In one study,
these injections, as an in adjunct
with laser, helped early stages
achieve stabilization, but further
investigation is needed.6
No medical therapy has been found to be effective at decreasing the growth rate or rupture rate of asymptomatic AAAs. Blood pressure and lipids should, however, be treated per usual.
Though no topical treatment has been proven to be effective in the treatment of Central Serous Retinopathy. Some doctors have attempted to use nonsteroidal topical medications to reduce the subretinal fluid associated with CSR. The nonsteroidal topical medications that are sometimes used to treat CSR are, Ketorolac, Diclofenac, or Bromfenac.
Because a splenic rupture permits large amounts of blood to leak into the abdominal cavity, it can result in shock and death. Generally a nonoperative approach is chosen in those who are hemodynamically stable with non-worsening symptoms. During this period of nonoperative management strict bed rest between 24–72 hours with careful monitoring along with a CT 7 days after the injury.
If an individual's spleen is enlarged, as is frequent in mononucleosis, most physicians will advise against activities (such as contact sports) where injury to the abdomen could be catastrophic.
Patients whose spleens have been removed must receive immunizations to help prevent infections such as pneumonia. This helps to replace the lost function of this organ.
People who have irregular sleep patterns, type A personalities, sleep apnea, or systemic hypertension are more susceptible Central Serous Retinopathy, as stated in Medscape “The pathogenesis here is thought to be elevated circulating cortisol and epinephrine, which affect the autoregulation of the choroidal circulation,” With management of these lifestyle patterns, it has been shown that the fluid associated with Central Serous Retinopathy can spontaneously resolve with the management of the cortisol and epinephrine levels. Melatonin has been shown to help regulate sleep in people who have irregular sleep patterns (such as 3rd shift workers, or overnight employees), in turn regulating cortisol and epinephrine levels to manage CSR.
Endovascular treatment of aortic aneurysms is a minimally invasive alternative to open surgery repair. It involves placement of an endo-vascular stent through small incisions at the top of each leg into the aorta.
As compared to open surgery, EVAR has a lower risk of death in the short term and a shorter hospital stay but may not always be an option. There does not appear to be a difference in longer term outcomes between the two. After EVAR, repeat procedures are more likely to be needed.
Better results are only in uncomplicated, elective descending thoracic and infrarenal aorta. Moreover, recent USA data from 2006–2007 of isolated descending thoracic aorta aneurysms found 23% of ideal candidate (uncomplicated, elective descending aortic aneurysms) underwent to TEVAR, the remaining 77% underwent open surgical repair.
Surgery (open or endovascular) is the definite treatment of an aortic aneurysm. Medical therapy is typically reserved for smaller aneurysms or for elderly, frail patients where the risks of surgical repair exceed the risks of non-operative therapy (observation alone).
The treatment for myocardial rupture is supportive in the immediate setting and surgical correction of the rupture, if feasible. A certain small percentage of individuals do not seek medical attention in the acute setting and survive to see the physician days or weeks later. In this setting, it may be reasonable to treat the rupture medically and delay or avoid surgery completely, depending on the individual's comorbid medical issues.
Antenatal corticosteroids have a role in reducing incidence of germinal matrix hemorrhage in premature infants.
Many approaches have been promoted as methods to reduce or reverse atheroma progression:
- eating a diet of raw fruits, vegetables, nuts, beans, berries, and grains;
- consuming foods containing omega-3 fatty acids such as fish, fish-derived supplements, as well as flax seed oil, borage oil, and other non-animal-based oils;
- abdominal fat reduction;
- aerobic exercise;
- inhibitors of cholesterol synthesis (known as statins);
- low normal blood glucose levels (glycosylated hemoglobin, also called HbA1c);
- micronutrient (vitamins, potassium, and magnesium) consumption;
- maintaining normal, or healthy, blood pressure levels;
- aspirin supplement
- cyclodextrin can solubilize cholesterol, removing it from plaques
Put simply, take steps to live a healthy, sustainable lifestyle.
Newer clinical trial results (2007), e.g. the COURAGE trial, have demonstrated that aggressively treating some of the physiologic behavioral factors that promote atheromas with "optimal medical therapy" (not opening narrowing(s), a.k.a. stenoses, per se) produced the most effective results in terms of improving human survival and quality of life for those identified as having already developed advanced cardiovascular disease with many vulnerable plaques.