Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Owing to the self-limiting nature of the disease, treatment is generally not required. In cases where lesions appear to be interfering with the optic nerve, methyl prednisone is prescribed.
Treatment requires careful consideration of angiographic findings when a choroidal neovascular membrane is suspected which is a condition that responds to treatment. A vitreo-retinal specialist (an ophthalmologist specialized in treatment of retinal diseases) should be consulted for proper management of the case.
Presumed ocular histoplasmosis syndrome and age-related macular degeneration (AMD) have been successfully treated with laser, anti-vascular endothelial growth factors and photodynamic therapy. Ophthalmologists are using anti-vascular endothelial growth factors to treat AMD and similar conditions since research indicates that vascular endothelial growth factor (VEGF) is one of the causes for the growth of the abnormal vessels that cause these conditions.
Treatment is based
on the stage of the disease. Stage 1 does not
require treatment and
should be observed. 4
Neovascularization
(stage 2) responds well
to laser ablation or
cryotherapy.2,4 Eyes
with retinal detachments (stages
3 through 5) require surgery, with
earlier stages requiring scleral
buckles and later stages ultimately
needing vitrectomy. 2,4
More recently, the efficacy of
anti-VEGF intravitreal injections
has been studied. In one study,
these injections, as an in adjunct
with laser, helped early stages
achieve stabilization, but further
investigation is needed.6
Though no topical treatment has been proven to be effective in the treatment of Central Serous Retinopathy. Some doctors have attempted to use nonsteroidal topical medications to reduce the subretinal fluid associated with CSR. The nonsteroidal topical medications that are sometimes used to treat CSR are, Ketorolac, Diclofenac, or Bromfenac.
Laser treatment of drusen has been studied. While it is possible to eliminate drusen with this treatment strategy, it has been shown that this fails to reduce the risk of developing the choroidal neovascularisation which causes the blindness associated with age-related macular degeneration.
People who have irregular sleep patterns, type A personalities, sleep apnea, or systemic hypertension are more susceptible Central Serous Retinopathy, as stated in Medscape “The pathogenesis here is thought to be elevated circulating cortisol and epinephrine, which affect the autoregulation of the choroidal circulation,” With management of these lifestyle patterns, it has been shown that the fluid associated with Central Serous Retinopathy can spontaneously resolve with the management of the cortisol and epinephrine levels. Melatonin has been shown to help regulate sleep in people who have irregular sleep patterns (such as 3rd shift workers, or overnight employees), in turn regulating cortisol and epinephrine levels to manage CSR.
The acute uveitis phase of VKH is usually responsive to high-dose oral corticosteroids; parenteral administration is usually not required. However, ocular complications may require an subtenon or intravitreous injection of corticosteroids or bevacizumab. In refractory situations, other immunosuppressives such as cyclosporine, or tacrolimus, antimetabolites (azathioprine, mycophenolate mofetil or methotrexate), or biological agents such as intravenous immunoglobulins (IVIG) or infliximab may be needed.
It is important to distinguish between treatment of the underlying inflammation (PIC) and the treatment of CNV.
2-pronged approach:
Treatment is not always necessary and observation may be appropriate for lesions if they are found in non-sight threatening areas (that is not centrally).
Active lesions of PIC can be treated with corticosteroids taken systemically (tablets) or regionally by injections around the eye (periorbital). It has been argued that treating lesions in this way may help minimise the development of CNV.
The treatment of CNV:
Early treatment is required for this complication. There are several possible treatment methods, but none of these treatments appears to be singly effective for the treatment of CNV.
1. Corticosteroids: systemic or intraocular
2. ‘Second line’ immunosuppressants: There is evidence that combined therapies of steroids and second line immunosuppressants may be important.
3. Surgical excision of the affected area in well selected cases.
4. Intravitreal anti-VEGF agents. Examples are bevacizumab (avastin) and ranibizumab. These relatively new drugs are injected into the eye.
5. Photodynamic therapy (PDT): A photosensitive drug is ‘activated’ by strong light. Consideration may be given to combined therapy of PDT and anti VEGF.
6. Laser photocoagulation: This is occasionally used unless the CNV is subfoveal (affecting the central or macular part of the vision). The laser treatment can damage the vision.
The use of the intravitreal anti VEGF agents namely bevacizumab and ranibizumab have been described recently. The current evidence supporting the use of anti-VEGF agents is based on retrospective case studies and could not be described as strong. However, further data from prospective controlled trials are needed before the therapeutic role of anti-VEGF therapy in the uveitis treatment regimen can be fully determined. The anti VEGF agents furthermore have not been shown to have an anti-inflammatory effect.
Thus, treatment of the underlying inflammatory disease should play a central role in the management of uveitic CNV. A two-pronged treatment that focuses on achieving control of inflammation through the use of corticosteroids and/or immunosuppressive agents, while treating
complications that arise despite adequate disease control with intravitreal anti-VEGF agents, may be useful.
Regular monitoring is essential to achieve a good outcome. This is because even if there is no active inflammation, there may still be occult CNV which requires treatment to avoid suffering vision loss.
Treatment for Sturge–Weber syndrome is symptomatic. Laser treatment may be used to lighten or remove the birthmark. Anticonvulsant medications may be used to control seizures. Doctors recommend early monitoring for glaucoma, and surgery may be performed on more serious cases. When one side of the brain is affected and anticonvulsants prove ineffective, the standard treatment is neurosurgery to remove or disconnect the affected part of the brain (hemispherectomy). Physical therapy should be considered for infants and children with muscle weakness. Educational therapy is often prescribed for those with mental retardation or developmental delays, but there is no complete treatment for the delays.
Brain surgery involving removing the portion of the brain that is affected by the disorder can be successful in controlling the seizures so that the patient has only a few seizures that are much less intense than pre-surgery. Surgeons may also opt to "switch-off" the affected side of the brain.
Latanoprost (Xalatan), a prostaglandin, may significantly reduce IOP (intraocular pressure) in patients with glaucoma associated with Sturge–Weber syndrome. Latanoprost is commercially formulated as an aqueous solution in a concentration of 0.005% preserved with 0.02% benzalkonium chloride (BAC). The recommended dosage of latanoprost is one drop daily in the evening, which permits better diurnal IOP control than does morning instillation. Its effect is independent of race, gender or age, and it has few to no side effects. Contraindications include a history of CME, epiretinal membrane formation, vitreous loss during cataract surgery, history of macular edema associated with branch retinal vein occlusion, history of anterior uveitis, and diabetes mellitus. It is also wise to advise patients that unilateral treatment can result in heterochromia or hypertrichosis that may become cosmetically objectionable.
CNV is conventionally treated with intravitreal injections of angiogenesis inhibitors (also known as "anti-VEGF" drugs) to control neovascularization and reduce the area of fluid below the retinal pigment epithelium. Angiogenesis inhibitors include pegaptanib, ranibizumab and bevacizumab (known by a variety of trade names, such as Macugen, Avastin or Lucentis). These inhibitors slow or stop the formation of new blood vessels (angiogenesis), typically by binding to or deactivating the transmission of vascular endothelial growth factor ('VEGF'), a signal protein produced by cells to stimulate formation of new blood vessels. The effectiveness of angiogenesis inhibitors has been shown to significantly improve visual prognosis with CNV, the recurrence rate for these neovascular areas remains high.
CNV may also be treated with photodynamic therapy coupled with a photosensitive drug such as verteporfin (Visudyne). The drug is given intravenously. It is then activated in the eye by a laser light. The drug destroys the new blood vessels, and prevents any new vessels forming by forming thrombi.
Visual prognosis is generally good with prompt diagnosis and aggressive immunomodulatory treatment. Inner ear symptoms usually respond to corticosteroid therapy within weeks to months; hearing usually recovers completely. Chronic eye effects such as cataracts, glaucoma, and optic atrophy can occur. Skin changes usually persist despite therapy.
Though there is no treatment for Cone dystrophy, certain supplements may help in delaying the progression of the disease.
The beta-carotenoids, lutein and zeaxanthin, have been evidenced to reduce the risk of developing age related macular degeneration (AMD), and may therefore provide similar benefits to Cone dystrophy sufferers.
Consuming omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) has been correlated with a reduced progression of early AMD, and in conjunction with low glycemic index foods, with reduced progression of advanced AMD, and may therefore delay the progression of cone dystrophy.
Supplements that include lutein and zeaxanthin may slow down the worsening of AMD. They have, however, not been shown to prevent the disease. There is not enough evidence to determine if statins have a role in preventing or slowing the progression of AMD. Antiangiogenic steroids such as anecortave acetate and triamcinolone acetonide have shown no evidence in preventing visual loss in people with neovascular AMD.
No medical or surgical treatment is available for this condition.
Peri-ocular injection of corticosteroids (injection of corticosteroids very close but not into the eye). In resistant cases oral administration of corticosteroids, immunosuppressive drugs, and laser or cryotherapy of the involved area may be indicated.
Steroid implants have been explored as a treatment option for individuals with non-infectious uveitis. Research comparing fluocinolone acetonide intravitreal implants to standard-of-care treatments (prednisolone with immunosuppressive agents) found that while the steroid implant treatment possibly prevents the recurrence of uveitis, there may be adverse safety outcomes, such as the increased risk for needing cataract surgery and surgery to lower intraocular pressure.
Patients with optic disc drusen should be monitored periodically for ophthalmoscopy, Snellen acuity, contrast sensitivity, color vision, intraocular pressure and threshold visual fields. For those with visual field defects optical coherence tomography has been recommended for follow up of nerve fiber layer thickness. Associated conditions such as angioid streaks and retinitis pigmentosa should be screened for. Both the severity of optic disc drusen and the degree of intraocular pressure elevation have been associated with visual field loss. There is no widely accepted treatment for ODD, although some clinicians will prescribe eye drops designed to decrease the intra-ocular pressure and theoretically relieve mechanical stress on fibers of the optic disc. Rarely choroidal neovascular membranes may develop adjacent to the optic disc threatening bleeding and retinal scarring. Laser treatment or photodynamic therapy or other evolving therapies may prevent this complication.
Vision improves in almost all cases. In rare cases, a patient may suffer permanent visual loss associated with lesions on their optic nerve.
Rarely, coexisting vasculitis may cause neurological complications. These occurrences can start with mild headaches that steadily worsen in pain and onset, and can include attacks of dysesthesia. This type of deterioration happens usually if the lesions involve the fovea.
Colobomas of the iris may be treated in a number of ways. A simple cosmetic solution is a specialized cosmetic contact lens with an artificial pupil aperture. Surgical repair of the iris defect is also possible. Surgeons can close the defect by stitching in some cases. More recently artificial iris prosthetic devices such as the Human Optics artificial iris have been used successfully by specialist surgeons. This device cannot be used if the natural lens is in place and is not suitable for children. Suture repair is a better option where the lens is still present.
Vision can be improved with glasses, contact lenses or even laser eye surgery but may be limited if the retina is affected or there is amblyopia.
The visual prognosis of eyes with PIC that do not develop subfoveal CNV is good. If CNV is picked up early and treated appropriately then the visual outcome can also be good. Frequent monitoring is important to ensure a good outcome. Poor vision occurs mostly with subfoveal CNV or if subretinal fibrosis (scarring) has formed.
The above information comes from a Fact sheet produced by the Uveitis Information Group May 2011. It has been factually checked by a member of the charity's Professional Medical Panel.
Cryotherapy (freezing) or laser photocoagulation are occasionally used alone to wall off a small area of retinal detachment so that the detachment does not spread.
The development of accurate and reliable non-invasive ICP measurement methods for VIIP has the potential to benefit many patients on earth who need screening and/or diagnostic ICP measurements, including those with hydrocephalus, intracranial hypertension, intracranial hypotension, and patients with cerebrospinal fluid shunts. Current ICP measurement techniques are invasive and require either a lumbar puncture, insertion of a temporary spinal catheter, insertion of a cranial ICP monitor, or insertion of a needle into a shunt reservoir.
Scleral buckle surgery is an established treatment in which the eye surgeon sews one or more silicone bands (or tyres) to the sclera (the white outer coat of the eyeball). The bands push the wall of the eye inward against the retinal hole, closing the break or reducing fluid flow through it and reducing the effect of vitreous traction thereby allowing the retina to re-attach. Cryotherapy (freezing) is applied around retinal breaks prior to placing the buckle. Often subretinal fluid is drained as part of the buckling procedure. The buckle remains in situ. The most common side effect of a scleral operation is myopic shift. That is, the operated eye will be more short sighted after the operation. Radial scleral buckle is indicated for U-shaped tears or Fishmouth tears, and posterior breaks. Circumferential scleral buckle is indicated for multiple breaks, anterior breaks and wide breaks. Encircling buckles are indicated for breaks covering more than 2 quadrants of retinal area, lattice degeneration located on more than 2 quadrant of retinal area, undetectable breaks, and proliferative vitreous retinopathy.
There are several different classes of pharmacological treatment agents that have some support for treating excoriation disorder: (1) SSRIs; (2) opioid antagonists; and (3) glutamatergic agents. In addition to these classes of drugs, some other pharmacological products have been tested in small trials as well.
SSRIs have shown to be effective in the treatment of OCD and this has provided an argument in favor of treating excoriation disorder with the same therapy. Unfortunately, the clinical studies have not provided clear support for this, because there have not been large double-blind placebo-controlled trials of SSRI therapy for excoriation disorder.
Review of treatment of excoriation disorder have shown that the following medications may be effective in reducing picking behavior: doxepin, clomipramine, naltrexone, pimozide, and olanzapine. Small studies of fluoxetine, an SSRI, in treating excoriation disorder showed that the drug reduced certain aspects of skin picking, as compared to placebo, but full remission was not observed. One small study of patients with excoriation disorder treated with citalopram, another SSRI, showed that those that took the drug significantly reduced their scores on the Yale-Brown Obsessive Compulsive Scale compared to placebo, but that there was no significant decrease on the visual-analog scale of picking behavior.
While there have been no human studies of opioid antagonists for the treatment of excoriation disorder, there have been studies showing that these products can reduce self-chewing in dogs with acral lick, which some have proposed is a good animal model for the body-focused repetitive behavior. Furthermore, there have been case reports that support the use of these opioid antagonists to treat excoriation disorder. Opioid antagonists work by affecting dopamine circuitry, thereby decreasing the pleasurable effects of picking.
Another class of possible pharmacological treatments are glutamatergic agents such as n-acetyl cysteine (NAC). These products have shown some ability to reduce other problematic behaviors such as cocaine addiction and trichotillomania. Some case studies and some small studies of NAC have shown a decrease in picking by treatment with NAC, as compared to placebo.
Excoriation disorder, and trichotillomania have been treated with inositol.
Topiramate, an anti-epileptic drug, has been used to treat excoriation disorder; in a small study of individuals with Prader–Willi syndrome, it was found to reduce skin picking.
The treatment protocol for uveal melanoma has been directed by many clinical studies, the most important being The Collaborative Ocular Melanoma Study (COMS). The treatment varies depending upon many factors, chief among them, the size of the tumor and results from testing of biopsied material from the tumor. Primary treatment can involve removal of the affected eye (enucleation); however, this is now reserved for cases of extreme tumor burden or other secondary problems. Advances in radiation therapies have significantly decreased the number of patients treated by enucleation in developed countries. The most common radiation treatment is plaque brachytherapy, in which a small disc-shaped shield (plaque) encasing radioactive seeds (most often Iodine-125, though Ruthenium-106 and Palladium-103 are also used) is attached to the outside surface of the eye, overlying the tumor. The plaque is left in place for a few days and then removed. The risk of metastasis after plaque radiotherapy is the same as that of enucleation, suggesting that micrometastatic spread occurs prior to treatment of the primary tumor. Other modalities of treatment include transpupillary thermotherapy, external beam proton therapy, resection of the tumor, Gamma Knife stereotactic radiosurgery or a combination of different modalities. Different surgical resection techniques can include trans-scleral partial choroidectomy, and transretinal endoresection.
There are good results from multiple doses of intravitreal injections of anti-VEGF drugs such as bevacizumab. A 2017 systematic review update found moderate evidence that aflibercept may have advantages in improving visual outcomes over bevacizumab and ranibizumab, after one year. Present recommended treatment for diabetic macular edema is Modified Grid laser photocoagulation combined with multiple injections of anti-VEGF drugs.